• Skip to Management
  • Skip to Main menu
  • Skip to Page content
Adlershof Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt
Search
  • de
  • en
  • Adlershof Logo
  • About / Directory
    • Companies / Institutes
    • Science City in numbers
    • Direction / Maps
      • Bus / Train
      • By Car
      • Bicycle
      • Orientation / Maps
      • Trail of Thoughts
  • Newsroom
    • Overview
    • News
      • Social Media Stream
      • Success Stories
    • Events / Calendar
      • Long Night of Sciences Berlin
      • Adlershof Dissertation Award
      • Adlershof Research Forum
    • Adlershof Journal
    • Hot Topics
      • Grand Challenges
      • Circular Economy
      • Digital infra­structure / 5G campus network
    • Photos / Flyer / Downloads
      • Magazine archive
    • WISTA-Editorial Staff
  • Science / Technology
    • Overview
    • Technology Centres
      • Photonics / Optics
      • Biotech­nology / Envi­ron­ment
      • Micro­systems / Materi­als
      • IT / Media
      • Renewable Energy / Photovoltaics
    • Non-university Research
    • Universities / Colleges
      • Humboldt-Universität zu Berlin
      • Services for Students
    • Young Talents / STEM / School Labs
    • Start-Ups
      • Adlershof Start-Up Centre IGZ
      • Adlershof Founder’s Lab
    • Networks / Management
      • Campus Club Adlershof
  • TV / Media
    • TV and Movie Production
    • Media Services / Companies
    • News and Events
    • Filming Locations
    • Costume Hire
    • GDR Film Archive
    • Tickets / Booking
  • Properties
    • Overview
    • Real Estate Rent
      • Office Space / Workspace / Laboratories
    • Real Estate Offers
      • Commercial Properties
    • ST3AM Working Environments / Coworking
    • Residential
    • Construction
      • Building Projects
      • Architecture
      • Webcam
  • Service
    • Overview
    • Gastronomy / Sport / Culture / Shopping
    • Jobs / Market
    • Social and Healthcare Facilities
    • WISTA-Business Services
    • Event Services / Guided Tours / Hotels
    • Facility Management
    • Downloads / Photos / Videos
    • Jobs for Refugees
  • Hood
    • Overview
    • History
    • Nature Park
    • Culture
    • Technology Park
    • Digital Tours
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt

News

  • Overview
  • News
  • Events / Calendar
  • Adlershof Journal
  • Hot Topics
  • Photos / Flyer / Downloads
  • WISTA-Editorial Staff
  • Adlershof
  • Newsroom
  • News
27. June 2025

Diffusion of hydrogen in MXene investigated at HZB

Modelling offers a solid foundation for further research with MXene as hydrogen storage systems

Schematic representation of the Ti3C2 crystal lattice with hydrogen and the associated bonding orbitals. Left: normal to the c-axis; right: perpendicular to the c-axis. © N. Nickel / HZB

Two-dimensional (2D) materials such as MXene are of great interest for hydrogen storage. An expert from HZB has investigated the diffusion of hydrogen in MXene using density functional theory. This modelling provides valuable insights into the key diffusion mechanisms and hydrogen's interaction with Ti₃C₂ MXene, offering a solid foundation for further experimental research.

Hydrogen is an energy carrier that can be produced in a climate-friendly way by electrolysis of water using ‘green’ electricity. However, storing hydrogen is not that easy. MXene could be a promising solution. MXene are compounds of metal and nitrogen or carbon that form a two-dimensional hexagonal structure, giving them special physical and chemical properties. Atoms and molecules, such as hydrogen, can be stored both in and between the 2D layers. ‘However, we know that hydrogen atoms and even molecules form complex bonds in MXene and on its surfaces,’ says Prof. Dr. Norbert Nickel, a physicist at HZB. When storing hydrogen, it is also important that the hydrogen bound in the material can be released when needed.

Previous neutron scattering experiments have shown that hydrogen can be stored in the MXene material Ti3C2. However, in 2024, Nickel calculated exactly how the hydrogen orbitals interact with the titanium and carbon orbitals using density functional theory. These results shed light on the nature of hydrogen's chemical bonding and how temperature affects the diffusion process (see Annalen der Physik, 536, 2400011 (2024)). Nevertheless, quantum mechanical calculations of the interactions between hydrogen atoms and molecules with Ti₃C₂ show that the simple model of chemical bonding is insufficient to describe hydrogen's bonding properties.

Recently Nickel analysed the chemical orbitals in more detail: the calculations showed that interstitial hydrogen atoms and molecules form s-like bonds with neighbouring titanium atoms and s-p hybrid orbitals with neighbouring carbon atoms.

For the diffusion process, it is important that these bonds can be broken. In solids, foreign atoms, such as hydrogen, can diffuse either via vacancies or via interstitial sites. Diffusion therefore depends on the concentration of vacancies and interstitial sites. ‘Modelling shows that hydrogen transport in Ti3C2 occurs via interstitial sites and that diffusion via vacancies plays no role,’ Nickel summarises the results. This allows hydrogen atoms and molecules in Ti3C2 MXene to achieve high mobility with diffusion coefficients of 2.4 × 10−5 cm−2/s at a moderate temperature of 500 K.

Calculations of the orbital interactions between hydrogen and Ti₃C₂ also enable the parameter ranges in which particularly interesting experimental observations can be expected to be estimated in advance for the first time, for example with spectroscopic measurements at BESSY II.

Publication:

Nano Letters (2025): Hydrogen Diffusion in Ti3C2 MXenes
Norbert H. Nickel
DOI: 10.1021/acs.nanolett.4c05749

Contact:

Prof. Dr. Norbert Nickel
Helmholtz-Zentrum Berlin für Materialien und Energie
Young Investigator Group Nanoscale Solid-Liquid Interfaces
+49 30 8062-17159
nickel(at)helmholtz-berlin.de

 

Press release HZB, 23 June 2025

Research Renewable Energies Grand Challenges Microsystems / Materials

Related News

  • Image from scanning electron microscope

    MXenes boost the effectiveness of catalysts for the production of green hydrogen

    HZB team shows a new way to highly efficient and inexpensive catalysts
  • Surface of a Vanadium carbide MXene © B. Schmiedecke/HZB

    MXenes show talent as catalyst for the production of green hydrogen

    This class of materials is more stable and efficient than the best metal oxide catalysts currently available
  • Scanning X-ray images of a dismounted Li-ion battery with cycled MXene electrode © HZB

    MXenes for energy storage: Chemical imaging more than just surface deep

    Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the characterization of layered materials in complex systems
  • The experiment at BessyII © M. Künsting /HZB

    HZB team investigates charge transport in MXenes

    Superstore MXene are considered an exciting new class of materials for energy storage

Related Institutions

  • Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronenspeicherring BESSY II
  • LinkedInshare0
  • Facebookshare0
  • WhatsAppshare0
  • E-Mail

The development of the Science and Technology Park Berlin Adlershof was and is co-financed by the European Union namely by EFRE. This concerns infrastructure development like construction of technology centres. Furthermore EFRE is used for international projects.

  • © WISTA Management GmbH
  • Legal Notice
  • Privacy Policy
  • Social Media Guide
  • FAQ
  • Contact
  • Press
  • Newsletter
  • RSS
  • International
Member of:
Zukunftsort Adlershof Logo