• Skip to Management
  • Skip to Main menu
  • Skip to Page content
Adlershof Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt
Search
  • de
  • en
  • Adlershof Logo
  • About / Directory
    • Companies / Institutes
    • Science City in numbers
    • Direction / Maps
      • Bus / Train
      • By Car
      • Bicycle
      • Orientation / Maps
      • Trail of Thoughts
  • Newsroom
    • Overview
    • News
      • Social Media Stream
      • Success Stories
    • Events / Calendar
      • Adlershof Dissertation Award
      • Adlershof Research Forum
      • Long Night of Sciences Berlin
    • Adlershof Journal
    • Hot Topics
      • Adlershof Mission "Grand Challenges"
      • Circular Economy
      • Digital infra­structure / 5G campus network
    • Photos / Flyer / Downloads
      • Magazine archive
    • WISTA-Editorial Staff
  • Science / Technology
    • Overview
    • Technology Centres
      • Photonics / Optics
      • Biotech­nology / Envi­ron­ment
      • Micro­systems / Materi­als
      • IT / Media
      • Renewable Energy / Photovoltaics
    • Non-university Research
    • Universities / Colleges
      • Humboldt-Universität zu Berlin
      • Services for Students
    • Young Talents / STEM / School Labs
    • Start-Ups
      • Adlershof Start-Up Centre IGZ
      • Adlershof Founder’s Lab
    • Networks / Management
      • Campus Club Adlershof
  • TV / Media
    • TV and Movie Production
    • Media Services / Companies
    • News and Events
    • Filming Locations
    • Costume Hire
    • GDR Film Archive
    • Tickets / Booking
  • Properties
    • Overview
    • Real Estate Rent
      • Office Space / Workspace / Laboratories
    • Real Estate Offers
      • Commercial Properties
    • ST3AM Working Environments / Coworking
    • Residential
    • Construction
      • Building Projects
      • Architecture
      • Webcam
  • Service
    • Overview
    • Gastronomy / Sport / Culture / Shopping
    • Jobs / Market
    • Social and Healthcare Facilities
    • WISTA-Business Services
    • Event Services / Guided Tours / Hotels
    • Facility Management
    • Downloads / Photos / Videos
    • Jobs for Refugees
  • Hood
    • Overview
    • History
    • Nature Park
    • Culture
    • Technology Park
    • Digital Tours
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt

News

  • Overview
  • News
  • Events / Calendar
  • Adlershof Journal
  • Hot Topics
  • Photos / Flyer / Downloads
  • WISTA-Editorial Staff
  • Adlershof
  • Newsroom
  • News
10. December 2020

European Research Council (ERC) awards Consolidator Grant to Jochen Mikosch

MBI researcher receives 2 million Euro of funding to perform basic research on time-resolved structural dynamics of chemical reactions

J. Mikosh © MBI / Ralf Günther
Credit: © MBI / Ralf Günther

Jochen Mikosch receives a prestigious Consolidator Grant from the European Research Council (ERC). In a highly competitive and thorough procedure it is awarded to established researchers with 7-12 years of experience since completion of their PhD who present an excellent research proposal and already have a scientific track record showing great promise. The ERC Consolidator Grant is endowed with up to 2.0 million Euro over a funding period of 5 years and intended to consolidate an independent, excellent research team from all domains of science. Jochen Mikosch receives the grant to perform basic research on time-resolved structural dynamics of chemical reactions.

Jochen Mikosch is group leader and project coordinator at the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy in the Forschungsverbund Berlin. He is known for his studies applying Attosecond Science to molecules and chemical dynamics. Following undergraduate and graduate studies in Freiburg, Heidelberg, and Cambridge (UK), he defended his PhD with Roland Wester in Freiburg in 2008 and went on to a Postdoctoral fellowship with Albert Stolow at the National Research Council in Ottawa (Canada). He joined the Max-Born-Institute in the fall of 2013.

Molecules consist of atoms, which are held together by chemical bonds. In a chemical reaction two molecules come so close that bonds are broken and new bonds are formed. The configurations during the chemical transformation, being neither reactants nor products, are called the transition state. During this ultrashort, critical time window the outcome of the chemical reaction is determined. Experimentally depicting the structural transformations during the transition state would hence be of fundamental importance for chemistry.

Efforts to depict the structural transformations during chemical reactions have thus far fallen short due to a conceptual experimental problem: The start-time dilemma. In conventional samples the reactants are distributed over a wide range of spatial configurations and even with an ultrashort laser pulse there is no external control over the precise moment when a reaction takes place.

The funded project c-TSD-p aims to solve this dilemma by bringing together two key ingredients: First, reaction partners are held closely together, in a well-defined initial configuration, within a reaction precursor. Such a complex allows initiating the chemical reaction at a defined time with a femtosecond laser pulse. Moreover, the tunable wavelength of the laser pulse allows controlling the speed with which the two reactions partners encounter each other. Second, as a function of delay after the initiating laser pulse, the three-dimensional structure of the transition state is imaged with Coulomb Explosion Imaging. Coulomb explosion is a tool from the toolbox of Attosecond Science: Within a very short time the binding electrons are removed with a second laser pulse such that the positively charged atomic fragments repel each other. An experimental determination of the fragment momenta in coincidence allows constructing the evolving chemical structure.

c-TSD-p will use cutting edge laser technology, both at MBI and at X-ray free electron lasers such as the recently commissioned European XFEL in Hamburg to answer key fundamental questions surrounding transition state dynamics. Such understanding could help to figure out mechanisms of optimizing reaction pathways in applications, such as in synthetic chemistry. Within the project several positions for PhD students and Postdocs will become available.
 

Contact:

Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy
Dr. Jochen Mikosch
Phone: +49 30 6392-1295
Email: jochen.mikosch(at)mbi-berlin.de

 

Press release MBI, 9 December 2020

Success Stories Photonics / Optics Research

Related News

  • How Molecules teeter in a laser field

    MBI scientists demonstrate the first attosecond transient absorption spectroscopy (ATAS) experiment on a polyatomic molecule
  • Focusing of an XUV beam - MBI Adlershof

    MBI researchers develop gas lens to focus XUV radiation

    Atomic jet - the first lens for extreme-ultraviolet light developed
  • electronic wavepackets

    MBI research results refine our understanding of strong-field processes

    Laser-driven electron recollision remembers molecular orbital structure
  • MBI

    The crucial first few femtoseconds

    MBI researchers tackle long-standing problem of few-femtosecond internal conversion

Related Institutions

  • Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie im Forschungsverbund Berlin e.V. (MBI)
  • LinkedInshare0
  • Facebookshare0
  • WhatsAppshare0
  • E-Mail

The development of the Science and Technology Park Berlin Adlershof was and is co-financed by the European Union namely by EFRE. This concerns infrastructure development like construction of technology centres. Furthermore EFRE is used for international projects.

  • © WISTA Management GmbH
  • Legal Notice
  • Privacy Policy
  • Social Media Guide
  • FAQ
  • Contact
  • Press
  • Newsletter
  • RSS
  • International
Member of:
Zukunftsort Adlershof Logo