• Skip to Management
  • Skip to Main menu
  • Skip to Page content
Adlershof Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt
Search
  • de
  • en
  • Adlershof Logo
  • About / Directory
    • Companies / Institutes
    • Science City in numbers
    • Direction / Maps
      • Bus / Train
      • By Car
      • Bicycle
      • Orientation / Maps
      • Trail of Thoughts
  • Newsroom
    • Overview
    • News
      • Social Media Stream
      • Success Stories
    • Events / Calendar
      • Adlershof Dissertation Award
      • Adlershof Research Forum
      • Long Night of Sciences Berlin
    • Adlershof Journal
    • Hot Topics
      • Adlershof Mission "Grand Challenges"
      • Circular Economy
      • Digital infra­structure / 5G campus network
    • Photos / Flyer / Downloads
      • Magazine archive
    • WISTA-Editorial Staff
  • Science / Technology
    • Overview
    • Technology Centres
      • Photonics / Optics
      • Biotech­nology / Envi­ron­ment
      • Micro­systems / Materi­als
      • IT / Media
      • Renewable Energy / Photovoltaics
    • Non-university Research
    • Universities / Colleges
      • Humboldt-Universität zu Berlin
      • Services for Students
    • Young Talents / STEM / School Labs
    • Start-Ups
      • Adlershof Start-Up Centre IGZ
      • Adlershof Founder’s Lab
    • Networks / Management
      • Campus Club Adlershof
  • TV / Media
    • TV and Movie Production
    • Media Services / Companies
    • News and Events
    • Filming Locations
    • Costume Hire
    • GDR Film Archive
    • Tickets / Booking
  • Properties
    • Overview
    • Real Estate Rent
      • Office Space / Workspace / Laboratories
    • Real Estate Offers
      • Commercial Properties
    • ST3AM Working Environments / Coworking
    • Residential
    • Construction
      • Building Projects
      • Architecture
      • Webcam
  • Service
    • Overview
    • Gastronomy / Sport / Culture / Shopping
    • Jobs / Market
    • Social and Healthcare Facilities
    • WISTA-Business Services
    • Event Services / Guided Tours / Hotels
    • Facility Management
    • Downloads / Photos / Videos
    • Jobs for Refugees
  • Hood
    • Overview
    • History
    • Nature Park
    • Culture
    • Technology Park
    • Digital Tours
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt

News

  • Overview
  • News
  • Events / Calendar
  • Adlershof Journal
  • Hot Topics
  • Photos / Flyer / Downloads
  • WISTA-Editorial Staff
  • Adlershof
  • Newsroom
  • News
24. August 2015

How to Flow Ultrathin Water Layers

A Liquid Flatjet for X-Ray Spectroscopy at BESSY II

Liquid flatjet system. Credit: MBI

A major advance in solution phase soft-x-ray spectroscopy has been achieved utilizing a new liquid flatjet system, paving the way for novel steady-state and time-resolved experiments.

Element-specific x-ray methods play a key role in determining the atomic structure and composition of matter and functional materials. X-ray spectroscopy is sensitive to the oxidation state, the distances, coordination number and species of the atoms immediately surrounding the selected element. A large variety of x-ray spectroscopic techniques have been applied to gas-phase, bulk liquid or solid-state samples, or have been used to probe molecular systems at interfaces. X-ray spectroscopy is predominantly done at large-scale synchrotron facilities, or in more recent years with x-ray free electron lasers, probing steady-state and time-resolved material properties.

Solution phase soft-x-ray absorption spectroscopy (XAS, energy range approximately from 0.2 - 1.5 keV) is not an easy method: experiments need to be done under vacuum conditions, an environment obviously incompatible with the high vapor pressure of water. Furthermore, if measured in transmission, absorption cross sections demand sample thicknesses in the micrometer and submicrometer range (1 micrometer = 10-6m = one millionth of a meter). Alternatively, if secondary signals such as x-ray fluorescence are measured, the experiment is limited to comparably large solute concentrations. Using sample cells with thin membrane windows enables control of appropriate sample thicknesses, but sample degradation upon x-ray illumination (or upon pump laser illumination in time-resolved experiments) makes this approach disadvantageous for photolabile molecular systems. Sample refreshment is possible with a liquid jet, generated by pumping a solution through a nozzle with a small orifice, into the vacuum chamber. Single liquid jets have, however, difficulties to implement the required (sub)micron thicknesses.

A collaboration between scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI), the Helmholtz-Zentrum Berlin (HZB) and the Max Planck Institute for Dynamics and Self-Organization (MPIDS) have now demonstrated the successful implementation of a liquid flatjet with a thickness in the μm range, allowing for XAS transmission measurements in the soft-x-ray regime. Here a phenomenon well known in the field of fluid dynamics has been applied: by obliquely colliding two identical laminar jets, the liquid expands radially, generating a sheet in the form of a leaf, bounded by a thicker rim, orthogonal to the plane of the impinging jets.

The novel aspect here is that a liquid water flatjet has been demonstrated with thicknesses in the few micrometer range, stable for tens to hundreds of minutes, fully operational under vacuum conditions (‹10-3mbar). For the first time, soft x-ray absorption spectra of a liquid sample could be measured in transmission without any membrane. The x-ray measurements were performed at the soft x-ray synchrotron facility BESSYII of the Helmholtz-Zentrum Berlin. This technological breakthrough opens up new frontiers in steady-state and time-resolved soft-x-ray spectroscopy of solution phase systems.

Figure: Liquid flatjet system, showing the two nozzles from which two impinging single jets form a 1 mm wide and 5 mm long liquid water sheet with a thickness of 1 - 2 μm as determined by measuring the transmission at the oxygen K absorption edge (left), with which XAS measurements in transmission can be made on aqueous solutions, as exemplified with the nitrogen K absorption edge spectrum of ammoniumchloride (right).

Original publication: Structural Dynamics 2, 054301 (2015)
A liquid flatjet system for solution phase soft-x-ray spectroscopy

Maria Ekimova, Wilson Quevedo, Manfred Faubel, Philippe Wernet, Erik T.J. Nibbering

Contact:

Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Dr. Maria Ekimova
Tel.: +49 (0) 30 6392-1454
Email: ekimova(at)mbi-berlin.de

Dr. Erik T.J. Nibbering
Tel.: +49 (0) 30 6392-1477
Email: nibbering(at)mbi-berlin.de

  • LinkedInshare0
  • Facebookshare0
  • WhatsAppshare0
  • E-Mail

The development of the Science and Technology Park Berlin Adlershof was and is co-financed by the European Union namely by EFRE. This concerns infrastructure development like construction of technology centres. Furthermore EFRE is used for international projects.

  • © WISTA Management GmbH
  • Legal Notice
  • Privacy Policy
  • Social Media Guide
  • FAQ
  • Contact
  • Press
  • Newsletter
  • RSS
  • International
Member of:
Zukunftsort Adlershof Logo