• Skip to Management
  • Skip to Main menu
  • Skip to Page content
Adlershof Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt
Search
  • de
  • en
  • Adlershof Logo
  • About / Directory
    • Companies / Institutes
    • Science City in numbers
    • Direction / Maps
      • Bus / Train
      • By Car
      • Bicycle
      • Orientation / Maps
      • Trail of Thoughts
  • Newsroom
    • Overview
    • News
      • Social Media Stream
      • Success Stories
    • Events / Calendar
      • Adlershof Dissertation Award
      • Adlershof Research Forum
      • Long Night of Sciences Berlin
    • Adlershof Journal
    • Hot Topics
      • Adlershof Mission "Grand Challenges"
      • Circular Economy
      • Digital infra­structure / 5G campus network
    • Photos / Flyer / Downloads
      • Magazine archive
    • WISTA-Editorial Staff
  • Science / Technology
    • Overview
    • Technology Centres
      • Photonics / Optics
      • Biotech­nology / Envi­ron­ment
      • Micro­systems / Materi­als
      • IT / Media
      • Renewable Energy / Photovoltaics
    • Non-university Research
    • Universities / Colleges
      • Humboldt-Universität zu Berlin
      • Services for Students
    • Young Talents / STEM / School Labs
    • Start-Ups
      • Adlershof Start-Up Centre IGZ
      • Adlershof Founder’s Lab
    • Networks / Management
      • Campus Club Adlershof
  • TV / Media
    • TV and Movie Production
    • Media Services / Companies
    • News and Events
    • Filming Locations
    • Costume Hire
    • GDR Film Archive
    • Tickets / Booking
  • Properties
    • Overview
    • Real Estate Rent
      • Office Space / Workspace / Laboratories
    • Real Estate Offers
      • Commercial Properties
    • ST3AM Working Environments / Coworking
    • Residential
    • Construction
      • Building Projects
      • Architecture
      • Webcam
  • Service
    • Overview
    • Gastronomy / Sport / Culture / Shopping
    • Jobs / Market
    • Social and Healthcare Facilities
    • WISTA-Business Services
    • Event Services / Guided Tours / Hotels
    • Facility Management
    • Downloads / Photos / Videos
    • Jobs for Refugees
  • Hood
    • Overview
    • History
    • Nature Park
    • Culture
    • Technology Park
    • Digital Tours
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt

News

  • Overview
  • News
  • Events / Calendar
  • Adlershof Journal
  • Hot Topics
  • Photos / Flyer / Downloads
  • WISTA-Editorial Staff
  • Adlershof
  • Newsroom
  • News
30. June 2020

Light from inside the tunnel

Physicists from the University of Rostock and MBI Berlin reveal a so-far overlooked nonlinear optical mechanism

Figure: Universität Rostock, B. Liewehr
Light emission (blue) from the current associated with light-induced electronic tunneling inside a transparent dielectric material due to excitation with a strong optical field (red). Source: Universität Rostock, B. Liewehr

Steering and monitoring the light-driven motion of electrons inside matter on the time-scale of a single optical cycle is a key challenge in ultrafast light wave electronics and laser-based material processing. Physicists from the Max Born Institute in Berlin and the University of Rostock have now revealed a so-far overlooked nonlinear optical mechanism that emerges from the light-induced tunneling of electrons inside dielectrics. For intensities near the material damage threshold, the nonlinear current arising during tunneling becomes the dominant source of bright bursts of light, which are low-order harmonics of the incident radiation. These findings, which have just been published in “Nature Physics”, significantly expand both the fundamental understanding of optical non-linearity in dielectric materials and its potential for applications in information processing and light-based material processing.

Our current understanding of non-linear optics at moderate light intensities is based on the so-called Kerr non-linearity, which describes the non-linear displacement of tightly bound electrons under the influence of an incident optical light field. This picture changes dramatically when the intensity of this light field is sufficiently high to eject bound electrons from their ground state. At long wavelengths of the incident light field, this scenario is associated with the phenomenon of tunneling, a quantum process where an electron performs a classically forbidden transit through a barrier formed by the combined action of the light force and the atomic potential.

Already since the 1990’s and pioneered by studies from the Canadian scientist François Brunel, the motion of electrons that have emerged at the “end of the tunnel”, which happens with maximal probability at the crest of the light wave, has been considered as an important source for optical non-linearity. This picture has now changed fundamentally. “In the new experiment on glass, we could show that the current associated with the quantum mechanical tunneling process itself creates an optical non-linearity that surpasses the traditional Brunel mechanism”, explains Dr. Alexandre Mermillod-Blondin from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, who supervised the experiment. In the experiment, two ultrashort light pulses with different wavelengths and slightly different propagation directions were focused onto a thin slab of glass, and a time- and frequency-resolved analysis of the emerging light emission was performed.

Identification of the mechanism responsible for this emission was made possible by a theoretical analysis of the measurements that was performed by the group of Prof. Thomas Fennel, who works at the University of Rostock and at the Max Born Institute in the framework of a DFG Heisenberg Professorship. “The analysis of the measured signals in terms of a quantity that we termed the effective non-linearity was key to distinguish the new ionization current mechanism from other possible mechanisms and to demonstrate its dominance”, explains Fennel.

Future studies using this knowledge and the novel metrology method that was developed in the course of this work may enable researchers to temporally resolve and steer strong-field ionization and avalanching in dielectric materials with unprecedented resolution, ultimately possibly on the time-scale of a single cycle of light.

Original publication:

Origin of strong-field-induced low-order harmonic generation in amorphous quartz
P. Jürgens, B. Liewehr, B. Kruse, C. Peltz, D. Engel, A. Husakou, T. Witting, M. Ivanov, M. J. J. Vrakking, T. Fennel and A. Mermillod-Blondin
Nature Physics 2020, URL, DOI or PDF
 

Contact:

Prof. Thomas Fennel
Heisenberg-Professor for Strong-Field Nanophysics
Institute for Physics, University of Rostock &
Max Born Institute for Non-Linear Optics and Short Pulse Spectroscopy (MBI)
Phone +49 381 498-6815
Email thomas.fennel(at)uni-rostock.de
www.snp.physik.uni-rostock.de

Dr. Alexandre Mermillod-Blondin
Max Born Institute for Non-Linear Optics and Short Pulse Spectroscopy (MBI)
Phone +49 30 6392-1214
Email alexandre.mermillod(at)mbi-berlin.de
www.mbi-berlin.de

Anja Wirsing
Press Officer
Forschungsverbund Berlin e.V.
Phone +49 30 6392-3337
Email wirsing(at)fv-berlin.de
www.fv-berlin.de

Photonics / Optics Research

Related News

Fig.: © MBI

MBI researchers detect new technique to change the oscillation frequency of atoms

Hammer-on technique for atomic vibrations in a crystal

Related Institutions

  • Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie im Forschungsverbund Berlin e.V. (MBI)
  • LinkedInshare0
  • Facebookshare0
  • WhatsAppshare0
  • E-Mail

The development of the Science and Technology Park Berlin Adlershof was and is co-financed by the European Union namely by EFRE. This concerns infrastructure development like construction of technology centres. Furthermore EFRE is used for international projects.

  • © WISTA Management GmbH
  • Legal Notice
  • Privacy Policy
  • Social Media Guide
  • FAQ
  • Contact
  • Press
  • Newsletter
  • RSS
  • International
Member of:
Zukunftsort Adlershof Logo