• Skip to Management
  • Skip to Main menu
  • Skip to Page content
Adlershof Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt
Search
  • de
  • en
  • Adlershof Logo
  • About / Directory
    • Companies / Institutes
    • Science City in numbers
    • Direction / Maps
      • Bus / Train
      • By Car
      • Bicycle
      • Orientation / Maps
      • Trail of Thoughts
  • Newsroom
    • Overview
    • News
      • Social Media Stream
      • Success Stories
    • Events / Calendar
      • Long Night of Sciences Berlin
      • Adlershof Dissertation Award
      • Adlershof Research Forum
    • Adlershof Journal
    • Hot Topics
      • Grand Challenges
      • Circular Economy
      • Digital infra­structure / 5G campus network
    • Photos / Flyer / Downloads
      • Magazine archive
    • WISTA-Editorial Staff
  • Science / Technology
    • Overview
    • Technology Centres
      • Photonics / Optics
      • Biotech­nology / Envi­ron­ment
      • Micro­systems / Materi­als
      • IT / Media
      • Renewable Energy / Photovoltaics
    • Non-university Research
    • Universities / Colleges
      • Humboldt-Universität zu Berlin
      • Services for Students
    • Young Talents / STEM / School Labs
    • Start-Ups
      • Adlershof Start-Up Centre IGZ
      • Adlershof Founder’s Lab
    • Networks / Management
      • Campus Club Adlershof
  • TV / Media
    • TV and Movie Production
    • Media Services / Companies
    • News and Events
    • Filming Locations
    • Costume Hire
    • GDR Film Archive
    • Tickets / Booking
  • Properties
    • Overview
    • Real Estate Rent
      • Office Space / Workspace / Laboratories
    • Real Estate Offers
      • Commercial Properties
    • ST3AM Working Environments / Coworking
    • Residential
    • Construction
      • Building Projects
      • Architecture
      • Webcam
  • Service
    • Overview
    • Gastronomy / Sport / Culture / Shopping
    • Jobs / Market
    • Social and Healthcare Facilities
    • WISTA-Business Services
    • Event Services / Guided Tours / Hotels
    • Facility Management
    • Downloads / Photos / Videos
    • Jobs for Refugees
  • Hood
    • Overview
    • History
    • Nature Park
    • Culture
    • Technology Park
    • Digital Tours
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt

News

  • Overview
  • News
  • Events / Calendar
  • Adlershof Journal
  • Hot Topics
  • Photos / Flyer / Downloads
  • WISTA-Editorial Staff
  • Adlershof
  • Newsroom
  • News
16. April 2021

Real-time optical distance sensing of up-conversion nanoparticles with a precision of 2.8 nanometers

Team of researchers demonstrated ultra-precise localization and tracking of fluorescent nanoparticles

Credit: O. Benson, IRIS Adlershof
Calculated self-interference of a single nanoparticle placed on a mirror substrate with a silica layer as the spacer. (i), (ii) and (iii) show different cuts through the far-field patterns of oriented dipoles oscillating along the x,y and z-axis, respectively. Credit: O. Benson, IRIS Adlershof

Sub-diffraction limited localization of fluorescent emitters is a major goal of microscopy imaging. It is of key importance for so-called super-resolution, a technique that was awarded the Nobel Prize in Chemistry in 2014. A cooperation of researchers in Australia, China, the USA and IRIS Adlershof have now demonstrated ultra-precise localization and tracking of fluorescent nanoparticles dispersed on a mirror. The many randomly oriented molecular dipoles in such up-conversion nanoparticles (UCNPs) interfere with their own mirror images and create unique, bright and position-sensitive patterns in the spatial domain.

The pattern can be detected in the far-field by a sensitive camera and was compared to a detailed and quantitative numerical simulation. In this way it was possible to localize individual particles with an accuracy of only 2.8 nm, a value which is smaller than 1/350 of the excitation wavelength.

The localization can be performed rapidly, and a single particle can be followed with a 50Hz frame rate. This is much faster than other self-interference-based methods based on mapping of the fluorescence spectrum. A special benefit of UCNPs is their high photo-stability and sensitivity, e.g. to temperature and PH. Therefore, the novel technique may be used for high-resolution multimodality single-particle tracking and sensing.

Publication

Axial Localization and Tracking of Self-interference Nanoparticles by Lateral Point Spread Functions
Y. Liu, Z. Zhou, F. Wang, G. Kewes, S. Wen, S. Burger, M. Ebrahimi Wakiani, P. Xi, J. Yang, X. Yang, O. Benson, and D. Jin
Nat. Commun. 12 (2021) 2019, DOI: 10.1038/s41467-021-22283-0

 

Further information

IRIS Adlershof
Prof. Dr. Oliver Benson
Humboldt-Universität zu Berlin
Department of Physics
Phone: +49 30 2093-4711
Email: oliver.benson(at)physik.hu-berlin.de
www.iris-adlershof.de

 

Source: IRIS Adlershof, 13 April 2021

Universities

Related Institutions

  • Humboldt-Universität zu Berlin | Institut für Physik
  • LinkedInshare0
  • Facebookshare0
  • WhatsAppshare0
  • E-Mail

The development of the Science and Technology Park Berlin Adlershof was and is co-financed by the European Union namely by EFRE. This concerns infrastructure development like construction of technology centres. Furthermore EFRE is used for international projects.

  • © WISTA Management GmbH
  • Legal Notice
  • Privacy Policy
  • Social Media Guide
  • FAQ
  • Contact
  • Press
  • Newsletter
  • RSS
  • International
Member of:
Zukunftsort Adlershof Logo