• Skip to Management
  • Skip to Main menu
  • Skip to Page content
Adlershof Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt
Search
  • de
  • en
  • Adlershof Logo
  • About / Directory
    • Companies / Institutes
    • Science City in numbers
    • Direction / Maps
      • Bus / Train
      • By Car
      • Bicycle
      • Orientation / Maps
      • Trail of Thoughts
  • Newsroom
    • Overview
    • News
      • Social Media Stream
      • Success Stories
    • Events / Calendar
      • Adlershof Dissertation Award
      • Adlershof Research Forum
      • Long Night of Sciences Berlin
    • Adlershof Journal
    • Hot Topics
      • Adlershof Mission "Grand Challenges"
      • Circular Economy
      • Digital infra­structure / 5G campus network
    • Photos / Flyer / Downloads
      • Magazine archive
    • WISTA-Editorial Staff
  • Science / Technology
    • Overview
    • Technology Centres
      • Photonics / Optics
      • Biotech­nology / Envi­ron­ment
      • Micro­systems / Materi­als
      • IT / Media
      • Renewable Energy / Photovoltaics
    • Non-university Research
    • Universities / Colleges
      • Humboldt-Universität zu Berlin
      • Services for Students
    • Young Talents / STEM / School Labs
    • Start-Ups
      • Adlershof Start-Up Centre IGZ
      • Adlershof Founder’s Lab
    • Networks / Management
      • Campus Club Adlershof
  • TV / Media
    • TV and Movie Production
    • Media Services / Companies
    • News and Events
    • Filming Locations
    • Costume Hire
    • GDR Film Archive
    • Tickets / Booking
  • Properties
    • Overview
    • Real Estate Rent
      • Office Space / Workspace / Laboratories
    • Real Estate Offers
      • Commercial Properties
    • ST3AM Working Environments / Coworking
    • Residential
    • Construction
      • Building Projects
      • Architecture
      • Webcam
  • Service
    • Overview
    • Gastronomy / Sport / Culture / Shopping
    • Jobs / Market
    • Social and Healthcare Facilities
    • WISTA-Business Services
    • Event Services / Guided Tours / Hotels
    • Facility Management
    • Downloads / Photos / Videos
    • Jobs for Refugees
  • Hood
    • Overview
    • History
    • Nature Park
    • Culture
    • Technology Park
    • Digital Tours
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt

News

  • Overview
  • News
  • Events / Calendar
  • Adlershof Journal
  • Hot Topics
  • Photos / Flyer / Downloads
  • WISTA-Editorial Staff
  • Adlershof
  • Newsroom
  • News
15. October 2021

Advances in organic semiconductor research improve performance of light-emitting diodes (OLED)

Team of researchers investigated the synthesis, structure, optical properties of poly(triazine imide)

Credit: IRIS Adlershof
Credit: IRIS Adlershof

A team of researchers from King’s College London, Humboldt-Universität zu Berlin, Carl von Ossietzky Universität Oldenburg, and Helmholtz-Zentrum Berlin (HZB), headed by Prof. Michael J. Bojdys, who is a member of IRIS Adlershof, has investigated the synthesis, structure, optical properties of poly(triazine imide), a member of the family of graphitic carbon nitrides. Their progress on material quality and processing allowed for construction of the first single layer, organic light emitting device (OLED) with a solution-processed graphitic organic material as a metal-free emission layer.

Organic semiconductors have sparked great interest in academic and industrial circles over the last decades, because of their advantageous properties such as (i) a high absorption coefficient compared to conventionally used silicon as well as (ii) less energy intensive production, and (iii) composition from earth-abundant elements. Progress in this field of research promises new, cost- and energy-efficient technologies in consumer electronics, smart packaging, and flexible light-emitters.

Hitherto explored organic semiconductors often suffer from degradation processes and defects especially when electrochemically altered (“doped”), due to dopant drift and migration or due to oxidation when exposed to atmospheric conditions. The unique properties of poly(triazine imide) enable the research to address the issues that plague conventional organic semiconductors. Poly(triazine imide) is a very stable under heat and air. Furthermore, the graphitic morphology of poly(triazine imide) allows exfoliation of the material into thin, solution-processable layers, while at the same time reducing migration and drift of chemically bonded dopants.

“With the improved material quality, we are now able to dive deeper into the more delicate features of this material, such as the electronic structure and vibration modes. This will greatly improve our understanding of this material, as well as related materials, and help us improving OLED performance and think about future, high-value applications of poly(triazine imide).”, says David Burmeister, PhD student at bojdysLAB.

Publication:

Optimized synthesis of solution-processable crystalline poly(triazine imide) with minimized defects for OLED application
David Burmeister, Ha Anh Tran, Johannes Müller, Michele Guerrini, Caterina Cocchi, Julian Plaickner, Zdravko Kochovski, Emil List-Kratochvil, Michael Janus Bojdys
Angew. Chem. Int. Ed. 2021. DOI: 10.1002/anie.202111749
 

Contact:

IRIS Adlershof
Humboldt-Universität zu Berlin
Zum Großen Windkanal 2, 12489 Berlin
Phone +49 30 2093-66350
Email office(at)iris-adlershof.de
iris-adlershof.de

 

Press release IRIS Adlershof, 15 October 2021

Universities Research Microsystems / Materials

Related News

Figure: IRIS Adlershof

Organic electronics: a novel semiconductor from the family of carbon nitrides

Research teams from HU and HZB have investigated a triazine-based graphitic carbon nitride that is useful in optoelectronic applications

Related Institutions

  • Integrative Research Institute for the Sciences - IRIS Adlershof, Humboldt-Universität zu Berlin
  • Humboldt-Universität zu Berlin | Institut für Chemie
  • LinkedInshare0
  • Facebookshare0
  • WhatsAppshare0
  • E-Mail

The development of the Science and Technology Park Berlin Adlershof was and is co-financed by the European Union namely by EFRE. This concerns infrastructure development like construction of technology centres. Furthermore EFRE is used for international projects.

  • © WISTA Management GmbH
  • Legal Notice
  • Privacy Policy
  • Social Media Guide
  • FAQ
  • Contact
  • Press
  • Newsletter
  • RSS
  • International
Member of:
Zukunftsort Adlershof Logo