• Skip to Management
  • Skip to Main menu
  • Skip to Page content
Adlershof Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt
Search
  • de
  • en
  • Adlershof Logo
  • About / Directory
    • Companies / Institutes
    • Science City in numbers
    • Direction / Maps
      • Bus / Train
      • By Car
      • Bicycle
      • Orientation / Maps
      • Trail of Thoughts
  • Newsroom
    • Overview
    • News
      • Social Media Stream
      • Success Stories
    • Events / Calendar
      • Adlershof Dissertation Award
      • Adlershof Research Forum
      • Long Night of Sciences Berlin
    • Adlershof Journal
    • Hot Topics
      • Adlershof Mission "Grand Challenges"
      • Circular Economy
      • Digital infra­structure / 5G campus network
    • Photos / Flyer / Downloads
      • Magazine archive
    • WISTA-Editorial Staff
  • Science / Technology
    • Overview
    • Technology Centres
      • Photonics / Optics
      • Biotech­nology / Envi­ron­ment
      • Micro­systems / Materi­als
      • IT / Media
      • Renewable Energy / Photovoltaics
    • Non-university Research
    • Universities / Colleges
      • Humboldt-Universität zu Berlin
      • Services for Students
    • Young Talents / STEM / School Labs
    • Start-Ups
      • Adlershof Start-Up Centre IGZ
      • Adlershof Founder’s Lab
    • Networks / Management
      • Campus Club Adlershof
  • TV / Media
    • TV and Movie Production
    • Media Services / Companies
    • News and Events
    • Filming Locations
    • Costume Hire
    • GDR Film Archive
    • Tickets / Booking
  • Properties
    • Overview
    • Real Estate Rent
      • Office Space / Workspace / Laboratories
    • Real Estate Offers
      • Commercial Properties
    • ST3AM Working Environments / Coworking
    • Residential
    • Construction
      • Building Projects
      • Architecture
      • Webcam
  • Service
    • Overview
    • Gastronomy / Sport / Culture / Shopping
    • Jobs / Market
    • Social and Healthcare Facilities
    • WISTA-Business Services
    • Event Services / Guided Tours / Hotels
    • Facility Management
    • Downloads / Photos / Videos
    • Jobs for Refugees
  • Hood
    • Overview
    • History
    • Nature Park
    • Culture
    • Technology Park
    • Digital Tours
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt

News

  • Overview
  • News
  • Events / Calendar
  • Adlershof Journal
  • Hot Topics
  • Photos / Flyer / Downloads
  • WISTA-Editorial Staff
  • Adlershof
  • Newsroom
  • News
09. March 2022

Bremsstrahlung of black holes and neutron stars from quantum field theory

Physicians developed a new approach to determining gravitational waves

  • Visualization Bremsstrahlung. BSc thesis O. Babayemi
    Fig 1: Visualization of the gravitational Bremsstrahlung from the scattering of two black holes (BSc thesis O. Babayemi)
  • Fig 2: Feynman­ graphs. arXiv:2101.12688v3
    Fig 2: Feynman graphs to determine the waveform. The dotted lines represent the black holes, the waves represent gravitational radiation, and the lines represent fluctuations in the black hole's orbit. Credit: arXiv:2101.12688v3

When two massive objects (black holes, neutron stars, or stars) fly past each other, the gravitational interactions not only deflect their orbits, but also produce gravitational radiation, or gravitational bremsstrahlung, analogous to electromagnetism. The resulting gravitational waves of such a scattering event were calculated at leading order in Newton's gravitational constant in the 1970s using traditional methods of general relativity in an extensive series of four papers. Bremsstrahlung events are still out of reach for the current generation of gravitational-wave detectors because the signal is non-periodic and typically less intense. Nevertheless, they are interesting targets for future searches with future terrestrial and space-based observatories.

In the Quantum Field Theory lab around IRIS Adlerhof-member Prof. Plefka, a new approach to determining these waveforms (Fig. 1) and the deflections using methods of perturbative quantum field theory was recently developed, which proves to be significantly more efficient than the traditional approaches. It is based on a hybrid quantum field theory, in which the black holes (or stars) are idealized as point particles and interact with the gravitational field. The calculation is then based on a systematic diagrammatic expansion using Feynman graphs. I.e. the methods that were originally developed for the scattering of elementary particles can now also be used in astrophysical scenarios.

With this innovative method — the "Worldline Quantum Field Theory“ approach — our understanding of this fundamental physical process was recently significantly extended resulting in a series of three publications in the Physical Review Letters. In [1], the results from the 1970s were reproduced in a far more efficient way; this only required the calculation of three Feynman graphs (Fig. 2). In [2] the waveform could be extended to the case of rotating black holes and neutron stars. In a recent publication [3], the scattering angles and deflections in momenta and rotations due to the scattering process at the next-next-leading order of the gravitational constant were determined for the first time. Elaborated techniques for calculating Feynman integrals were used here. Interestingly, the rotational degrees of freedom of the black holes are described in this new formulation with a supersymmetric world line theory [4], which was originally developed in extensions of the Standard Model of particle physics.

This research was performed in the context of the DFG Research Training Group 2575 "Rethinking Quantum Field Theory“, where innovations in quantum field theory are developed in cooperation with the Max-Planck Institute for Gravitational Physics and the Helmholtz-Centre DESY.
 

Publications:

[1] Classical Gravitational Bremsstrahlung from a Worldline Quantum Field Theory
G. U. Jakobsen, G. Mogull, J. Plefka, and J. Steinhoff
Phys. Rev. Lett. 126 (2021) 201103
arxiv: 2101.12688

[2] Gravitational Bremsstrahlung and Hidden Supersymmetry of Spinning Bodies
G. U. Jakobsen, G. Mogull, J. Plefka, and J. Steinhoff
Phys. Rev. Lett. 128 (2022) 011101
arxiv: 2106.10256

[3] Conservative and radiative dynamics of spinning bodies at third post-Minkowskian order using worldline quantum field theory
G. U. Jakobsen and G. Mogull
erscheint in PRL
arxiv: 2201.07778

[4] SUSY in the sky with gravitons
G. U. Jakobsen, G. Mogull, J. Plefka, and J. Steinhoff
JHEP 2201 (2022) 027
arxiv: 2109.04465
 

Further information:

  • Videos of the scattering process on Youtube (from BSc thesis of O. Babayemi)
     

Contact:

Prof. Dr. Jan Plefka
Spokesperson RTG2575 „Rethinking Quantum Field Theory“
Dept. of Physics & IRIS Adlershof, Group Quantumfield- and Stringtheory
Email: jan.plefka(at)hu-berlin.de
Phone: +49 30 2093-66409
Secr.: +49 30 2093-66413
qft.physik.hu-berlin.de
www2.hu-berlin.de/rtg2575/

 

Released by IRIS Adlershof, 4. March 2022

Universities

Related News

Kick-off for Research Training Group “Rethinking Quantum Field Theory”

The Research Training Group (RTG) 2575 “Rethinking Quantum Field Theory” funded by the German Research Foundation (DFG) has started its work

Related Institutions

  • Humboldt-Universität zu Berlin | Institut für Physik
  • LinkedInshare0
  • Facebookshare0
  • WhatsAppshare0
  • E-Mail

The development of the Science and Technology Park Berlin Adlershof was and is co-financed by the European Union namely by EFRE. This concerns infrastructure development like construction of technology centres. Furthermore EFRE is used for international projects.

  • © WISTA Management GmbH
  • Legal Notice
  • Privacy Policy
  • Social Media Guide
  • FAQ
  • Contact
  • Press
  • Newsletter
  • RSS
  • International
Member of:
Zukunftsort Adlershof Logo