• Skip to Management
  • Skip to Main menu
  • Skip to Page content
Adlershof Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt
Search
  • de
  • en
  • Adlershof Logo
  • About / Directory
    • Companies / Institutes
    • Science City in numbers
    • Direction / Maps
      • Bus / Train
      • By Car
      • Bicycle
      • Orientation / Maps
      • Trail of Thoughts
  • Newsroom
    • Overview
    • News
      • Social Media Stream
      • Success Stories
    • Events / Calendar
      • Adlershof Dissertation Award
      • Adlershof Research Forum
      • Long Night of Sciences Berlin
    • Adlershof Journal
    • Hot Topics
      • Adlershof Mission "Grand Challenges"
      • Circular Economy
      • Digital infra­structure / 5G campus network
    • Photos / Flyer / Downloads
      • Magazine archive
    • WISTA-Editorial Staff
  • Science / Technology
    • Overview
    • Technology Centres
      • Photonics / Optics
      • Biotech­nology / Envi­ron­ment
      • Micro­systems / Materi­als
      • IT / Media
      • Renewable Energy / Photovoltaics
    • Non-university Research
    • Universities / Colleges
      • Humboldt-Universität zu Berlin
      • Services for Students
    • Young Talents / STEM / School Labs
    • Start-Ups
      • Adlershof Start-Up Centre IGZ
      • Adlershof Founder’s Lab
    • Networks / Management
      • Campus Club Adlershof
  • TV / Media
    • TV and Movie Production
    • Media Services / Companies
    • News and Events
    • Filming Locations
    • Costume Hire
    • GDR Film Archive
    • Tickets / Booking
  • Properties
    • Overview
    • Real Estate Rent
      • Office Space / Workspace / Laboratories
    • Real Estate Offers
      • Commercial Properties
    • ST3AM Working Environments / Coworking
    • Residential
    • Construction
      • Building Projects
      • Architecture
      • Webcam
  • Service
    • Overview
    • Gastronomy / Sport / Culture / Shopping
    • Jobs / Market
    • Social and Healthcare Facilities
    • WISTA-Business Services
    • Event Services / Guided Tours / Hotels
    • Facility Management
    • Downloads / Photos / Videos
    • Jobs for Refugees
  • Hood
    • Overview
    • History
    • Nature Park
    • Culture
    • Technology Park
    • Digital Tours
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt

News

  • Overview
  • News
  • Events / Calendar
  • Adlershof Journal
  • Hot Topics
  • Photos / Flyer / Downloads
  • WISTA-Editorial Staff
  • Adlershof
  • Newsroom
  • News
05. November 2024

New procedure for better thermoplastics

Research team at BESSY II was able to increase the performance of environmentally friendly materials

Layer structures of two PVDF/PLLA mixtures in nano-IR imaging © TU Eindhoven/HZB
In nano-IR imaging, the layer structures of the pure PVDF/PLLA mixture (left) and with the SAD additive (right) are clearly distinguishable. The light and dark colours correspond to the PLLA and PVDF phases, respectively. When SAD is added, the domain sizes of the two phases are reduced. © TU Eindhoven/HZB

Bio-based thermoplastics are produced from renewable organic materials and can be recycled after use. Their resilience can be improved by blending bio-based thermoplastics with other thermoplastics. However, the interface between the materials in these blends sometimes requires enhancement to achieve optimal properties. A team from the Eindhoven University of Technology in the Netherlands has now investigated at BESSY II how a new process enables thermoplastic blends with a high interfacial strength to be made from two base materials: Images taken at the new nano station of the IRIS beamline showed that nanocrystalline layers form during the process, which increase material performance.

Bio-based thermoplastics are considered environmentally friendly, as they are sourced from non-petroleum-based raw materials and can be recycled just like standard thermoplastics. A thermoplastic base material is Polylactic acid (PLA), which can be produced from sugar cane or corn. Researchers around the world are working to optimise the properties of PLA-based plastics, for example by mixing them with other thermoplastic base materials. However, this is a real challenge.

A new process for better blends

Now, a team from the TU Eindhoven led by Prof. Ruth Cardinaels is showing how PLA can be successfully mixed with another thermoplastic. They developed a process in which certain PLA-based copolymers (e.g. SAD) are formed during production, which facilitate the mixing of the two raw materials by forming particularly stable (stereo)-crystalline layers at the interfaces between the different polymer phases (ICIC strategy).

Insights at the IRIS-Beamline

At BESSY II, they have now discovered which processes ensure that the mechanical properties of the mixed thermoplastic are significantly better. To do so, they examined pure 50% blends of the thermoplastics PLA and polyvinylidene fluoride (PVDF) as well as samples with the PLA-based copolymers at the IRIS beamline of BESSY II.

Stereocomplex crystals at the interfaces

Using infrared spectroscopy on the IRIS beamline, PhD student Hamid Ahmadi was able to demonstrate the formation of the PLA-based copolymer SAD. Further X-ray measurements showed how the formation of SAD affects the crystallisation behaviour. The new nano imaging and spectroscopy capabilities at the IRIS beamline allow for advanced chemical visualization and identification from sample areas as small as 30 nm. This precision was crucial in determining that the stereocomplex crystals are exclusively located at the interface. Infrared nanoscopy images showed a 200-300 nm thick layer of stereocomplex crystals at the interfaces.

Reason for more stability

The formation of stereocomplex crystals at the interfaces increases the stability and crystallisation temperature. Nucleation at the interface accelerates the overall crystallisation process within the PLLA/PVDF blend. In addition, the interfacial crystalline layer improves the transfer of mechanical stresses between the phases and thus the tensile properties; the elongation at break even increases by up to 250%.

“By elucidating the location and distribution of the crystalline layer in our samples, we could understand the procedure of mixing much better”, Hamid Ahmadi says. “By developing a new strategy we have cleared a path for the development of high-performance polymer blends”, Ruth Cardinaels adds.

Note: The IRIS beamline at BESSY II was extended by a nanomicroscopy facility in 2024, which makes it possible to create images of sample areas of ~30 nm and to carry out IR spectroscopy.

Publication:

Toughening immiscible polymer blends: the role of interface-crystallization-induced compatibilization explored through nanoscale visualization
Hamid Ahmadi, Paul M. H. van Heugten, Alexander Veber, Ljiljana Puskar, Patrick D. Anderson, Ruth Cardinaels
ACS Applied Materials & Interfaces (2024). DOI: 10.1021/acsami.4c10829

Contact:

Prof. Dr. Ir. Ruth Cardinaels
TU Eindhoven
Department of Mechanical Engineering
R.M.Cardinaels(at)tue.nl


Helmholtz-Zentrum Berlin für Materialien und Energie
IRIS THz/Infrared Dipole Beamline

Dr. Ljiljana Puskar
+49 30 8062-14739
ljiljana.puskar(at)helmholtz-berlin.de

Dr. Alexander Veber
+49 30 8062-13443
alexander.veber(at)helmholtz-berlin.de

Dr. Antonia Rötger
Press Officer
+49 30 8062-43733
antonia.roetger(at)helmholtz-berlin.de

  

Press release HZB vom 4.11.2024

Research Photonics / Optics Microsystems / Materials Grand Challenges

Related News

  • IRIS beamline at BESSY II extended with nanomicroscopy

    The new nanoscope enables nanospectroscopy and nanoimaging of structures smaller than a thousandth of the diameter of a human hair
  • Membrane © B.Matos/IPEN

    How new materials increase the efficiency of direct ethanol fuel cells

    Research group investigated novel composite membrane at BESSY II
  • Rhodopsin © E. Ritter/HZB

    Watching complex molecules at work

    HZB team uses a newly developed infrared spectrometer at BESSY II to investigate how biomolecules in sensory cells work
  • Three-dimensional graphene

    Experiment at BESSY II shows that optical properties are tuneable
  • LinkedInshare0
  • Facebookshare0
  • WhatsAppshare0
  • E-Mail

The development of the Science and Technology Park Berlin Adlershof was and is co-financed by the European Union namely by EFRE. This concerns infrastructure development like construction of technology centres. Furthermore EFRE is used for international projects.

  • © WISTA Management GmbH
  • Legal Notice
  • Privacy Policy
  • Social Media Guide
  • FAQ
  • Contact
  • Press
  • Newsletter
  • RSS
  • International
Member of:
Zukunftsort Adlershof Logo