• Springe zu Management
  • Springe zu Hauptmenü
  • Springe zu Seiteninhalt
Adlershof Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt
Suche
  • Adlershof Logo
  • Firmen / Fakten
    • Firmen­suche / Institute
    • Wissen­schafts­stadt in Zahlen
    • Anfahrt / Karten
      • Bus / Bahn
      • Autoanfahrt
      • Fahrrad
      • Orientie­rungs­pläne
      • Virtueller Rundgang Adlershof
  • Aktuelles
    • Übersicht
    • News
      • Social Media Stream
      • Ausgezeichnet
    • Termine / Veranstaltungen
      • Lange Nacht der Wissenschaften
      • Science Slam
      • Dissertationspreis Adlershof
      • Jugend forscht
      • Diversity Conference
    • Adlershof Journal
    • Top-Themen
      • Grand Challenges
      • Circular Economy
      • Klimaschutz
      • Digitale Infra­struktur / 5G
      • Innovations­korridor Berlin-Lausitz
      • Nachwuchs­förderung / MINT
      • Frauen und Mädchen in der Wissenschaft
    • Fotos / Flyer / Downloads
      • Zeitschriften­archiv
    • Podcasts
    • WISTA-Redaktion
  • Wirtschaft / Wissenschaft
    • Übersicht
    • Technologie­felder
      • Photonik / Optik
      • Biotech­no­logie / Umwelt
      • Mikro­systeme / Mate­rialien
      • IT / Medien
      • Erneuer­bare Ener­gien / Photo­voltaik
      • Analytic City
    • Außeruni­versitäre Forschung
    • Univer­sitäten / Hochschulen
      • Humboldt-Universität zu Berlin
      • Services für Studierende
    • Ausbildung / Nachwuchsförderung / MINT
      • Jugend forscht
    • Gründen
      • Adlershofer Gründungs­zentrum IGZ
      • Gründungs­werkstatt Adlershof
    • Netzwerke / Management
      • Forum Adlershof e.V.
      • Campus Club Adlershof
      • Fachkräftenetzwerk Adlershof
      • WISTA Academy
      • Gesundheitsnetzwerk Adlershof
  • Film / TV
    • Film und Fernsehen
    • Firmen
    • News / Termine
    • Locations
    • Kostümverleih
    • DDR-Filmarchiv
    • Tickets
  • Immobilien
    • Übersicht
    • Immobilien mieten
      • Büroräume / Labore / Flächen
    • Grundstücke
      • Grundstücke / Gewerbe­immo­bilien
    • ST3AM Arbeitswelten / Coworking
    • Wohnprojekte
    • Bauprojekte
      • Bauvorhaben
      • Architektur
      • Webcam
  • Service
    • Übersicht
    • Gastronomie / Sport / Kultur / Einkaufen
    • Kleinan­zei­gen / Jobs
    • Gesundheit / Soziales
      • Gesundheits­netzwerk Adlershof
    • WISTA-Gründungs- und Business Services
    • Eventservice / Touren / Hotels
    • Facility Management
    • Downloads
    • Online Redaktionssystem WISTA direkt
  • Kiez
    • Übersicht
    • Geschichte
      • Der Technologiepark seit 1991
    • Landschaftspark
    • Kultur
    • Technologiepark
    • Digitale Spaziergänge
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt

Meldungen

  • Übersicht
  • News
  • Termine / Veranstaltungen
  • Adlershof Journal
  • Top-Themen
  • Fotos / Flyer / Downloads
  • Podcasts
  • WISTA-Redaktion
  • Adlershof
  • Aktuelles
  • Meldungen
19. April 2011

Herausragendes Nutzerexperiment bei BESSY

Max-Planck-Forscher finden Schaltmechanismus für schnellere Datenspeicherung

Mikroskopisch winzige ferromagnetische Plättchen zeigen ein Phänomen, das in Zukunft für eine besonders stabile magnetische Speicherung von Daten genutzt werden könnte: so genannte magnetische Vortex-Kerne. Dabei handelt es sich um nadelförmige magnetische Strukturen mit 20 Nanometern (Millionstel Millimeter) Durchmesser.

Vor fünf Jahren fanden Forscher des Max-Planck-Institutes für Intelligente Systeme (ehemals Max-Planck-Institut für Metallforschung) in Stuttgart einen Weg, die Magnetfeldnadeln trotz ihrer Stabilität mit winzigem Energieaufwand umzukehren, sodass ihre Spitze in die entgegengesetzte Richtung zeigt. Ein solcher Schaltvorgang ist die Vorraussetzung, um die Vortex-Kerne in der Datenverarbeitung verwenden zu können.

Nun haben die Stuttgarter Wissenschaftler einen neuen Mechanismus entdeckt, der diesen Schaltprozess um mindestens das 20-fache beschleunigt und ihn auf einen weitaus engeren Raum begrenzt als vorher. Somit könnten magnetische Vortex-Kerne eine zugleich stabile, schnelle und stark miniaturisierte Datenspeicherung ermöglichen.

Nur rund ein tausendstel Millimeter Kantenlänge und wenige Millionstel Millimeter Dicke: diese winzigen Abmessungen haben die Plättchen aus Permalloy, einer Legierung aus Nickel und Eisen, die die Forscher um Hermann Stoll vom Stuttgarter Max-Planck-Institut für Intelligente Systeme untersuchen. Die Plättchenform sorgt für die Ausbildung einer geordneten magnetischen Struktur. Die Ordnung erinnert an eine Zielscheibe: wie winzige Kompassnadeln bilden die magnetischen Momente der Atome in der Ebene des Plättchens konzentrische Kreise, so genannte Wirbel oder auf Englisch Vortices.

In der Mitte des Plättchens ändert sich diese kreisförmige Ordnung. „Stellen Sie sich vor, man legt konzentrische Kreise aus Streichhölzern“, erklärt Hermann Stoll. „In der Mitte des Kreises geht das nicht, weil die Streichhölzer zu lang sind. Man muss sie dann aus der Ebene herausdrehen, sodass sich eine Nadel bildet, die senkrecht zur Ebene steht“. In den Vortex-Plättchen passiert etwas Ähnliches: Es bildet sich eine Art Magnetfeldnadel, die aus der Ebene herausragt, der so genannte Vortex-Kern, mit gerade einmal 20 Nanometern Durchmesser. Weil er entweder nach oben oder nach unten zeigen kann, könnte er für die Speicherung von einem Informationsbit genutzt werden.

Mit einem von außen wirkenden Magnetfeld lässt sich die Polarität des Vortex-Kerns umschalten, allerdings muss es sehr stark sein, etwa ein halbes Tesla. Das entspricht etwa einem Drittel des Feldes, das der stärkste Dauermagnet liefern kann. Dies bringt einerseits den Vorteil mit sich, dass ein entsprechender Magnetspeicher gegen störende Magnetfelder stabil wäre. Diese Stabilität gerät andererseits aber auch zum Nachteil, da sie das Umkehren des Vortex-Kernes und somit das Verarbeiten von Daten erschwert.

Der neue Schaltmechanismus ermöglicht kompaktere Speicher

Doch es gibt raffinierte Mechanismen, die das Umschalten des Vortex-Kernes mit kleineren Magnetfeldern ermöglichen, ohne die magnetische Stabilität zu verlieren. Vor fünf Jahren fanden die Stuttgarter Forscher, zusammen mit Kollegen der Universität Gent, der Advanced Light Source in Berkeley, Kalifornien, des Forschungszentrums Jülich und den Universitäten Regensburg und Bielefeld, einen Weg, wie sich der Vortex-Kern mit einem 300 Mal schwächeren Magnetfeldpuls dynamisch umschalten lässt. Beobachtet haben die Wissenschaftler den zuvor unbekannten Mechanismus mithilfe der so genannten zeitaufgelösten magnetischen Raster-Röntgenmikroskopie, die am Stuttgarter Max-Planck-Institut entwickelt und in Berkeley an der Advanced Light Source durchgeführt worden war.

Inzwischen hat die Abteilung Schütz des Max-Planck-Institutes für Intelligente Systeme in enger Zusammenarbeit mit dem Helmholtz-Zentrum bei BESSY II in Berlin ein neuartiges Rasterröntgenmikroskop aufgebaut. Hier haben die Stuttgarter Physiker, zusammen mit Wissenschaftlern der Universitäten Gent und Regensburg, nun einen weiteren Mechanismus entdeckt, mit dem sich ein Vortex-Kern mindestens 20 Mal schneller umschalten lässt als bisher, nämlich innerhalb von rund 200 Pikosekunden, wobei die Forscher einen Magnetfeldpuls im Gigahertzbereich anlegen. Vor fünf Jahren hatten sie einen Puls im Megahertzbereich verwendet und das Umschalten dauerte vier Nanosekunden.

Bei dem jetzt entdeckten Mechanismus werden so genannte Spinwellen, also sich wellenförmig ausbreitende Fluktuationen der Magnetisierung des Materials, erzeugt. Wie das Wissenschaftlerteam festgestellt hat, sind diese Anregungen in der Lage, den Vortex-Kern umzuschalten. Der Forschergruppe gelang es zudem, dieses Phänomen theoretisch zu beschreiben. „Wir können voraussagen, dass es möglich ist, die Umschaltzeit noch um einen Faktor 10 zu verkürzen“, sagt Hermann Stoll.

Wenn es darum geht, einen Vortex-Kern als Speicherbit zu nutzen, bringt der jetzt beobachtete Effekt neben der höheren Schaltgeschwindigkeit einen weiteren Vorteil. Der Vortex-Kern bleibt beim Schalten mit Spinwellen nämlich nahezu ortsfest. Dagegen muss er beim langsameren Schalten mit Frequenzen im Megahertz-Bereich, wie sie vor fünf Jahren entdeckt worden waren, weit aus seiner Gleichgewichtslage ausgelenkt werden, so dass ein Speicherbit mehr Platz benötigt. Der neue Mechanismus ermöglicht also eine weitere Miniaturisierung, wenn künftig möglicherweise einmal Datenspeicher konstruiert werden, die nach diesem Prinzip arbeiten.

Weitere Informationen:

Dr. Hermann Stoll
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Telefon: +49 711 689-1848
Fax: +49 711 689-1952
E-Mail: stoll(at)mf.mpg.de

Matthias Kammerer
Max-Planck-Institut für Intelligente Systeme, Standort Stuttgart, Stuttgart
Telefon: +49 711 689-3438
Fax: +49 711 689-1952
E-Mail: kammerer(at)is.mpg.de

Originalveröffentlichung

Matthias Kammerer, Markus Weigand, Michael Curcic, Matthias Noske, Markus Sproll,  Arne Vansteenkiste, Bartel Van Waeyenberge, Hermann Stoll, Georg Woltersdorf,  Christian H. Back, Gisela Schuetz
Magnetic vortex core reversal by excitation of spin waves
Nature Communications, 12. April 2011; doi: 10.1038/ncomms1277

Ausgezeichnet! Außeruniversitäre Forschung IT / Medien Mikrosysteme / Materialien
  • LinkedInmitteilen0
  • Facebookteilen0
  • WhatsAppteilen0
  • E-Mail

Die Entwicklung des Wissenschafts- und Technologieparks Berlin Adlershof wurde und wird co-finanziert durch die Europäische Union mit EFRE-Mitteln; insbesondere Infrastrukturmaßnahmen wie der Bau von Technologiezentren. EFRE-Mittel werden auch für internationale Projekte verwendet.

  • © WISTA Management GmbH
  • Impressum
  • Datenschutz
  • Social-Media-Übersicht
  • FAQ
  • Kontakt
  • Presse
  • Newsletter
  • RSS
  • Werbung
  • International
Mitglied bei:
Zukunftsort Adlershof Logo