• Springe zu Management
  • Springe zu Hauptmenü
  • Springe zu Seiteninhalt
Adlershof Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt
Suche
  • Adlershof Logo
  • Firmen / Fakten
    • Firmen­suche / Institute
    • Wissen­schafts­stadt in Zahlen
    • Anfahrt / Karten
      • Bus / Bahn
      • Autoanfahrt
      • Fahrrad
      • Orientie­rungs­pläne
      • Virtueller Rundgang Adlershof
  • Aktuelles
    • Übersicht
    • News
      • Social Media Stream
      • Ausgezeichnet
    • Termine / Veranstaltungen
      • Science Slam
      • Dissertationspreis Adlershof
      • Lange Nacht der Wissenschaften
      • Jugend forscht
      • Diversity Conference
    • Adlershof Journal
    • Top-Themen
      • Adlershof Mission "Grand Challenges"
      • Circular Economy
      • Klimaschutz
      • Digitale Infra­struktur / 5G-Campus­netz
      • Innovations­korridor Berlin-Lausitz
      • Ausbildung / Nachwuchsförderung / MINT
      • Frauen und Mädchen in der Wissenschaft
    • Fotos / Flyer / Downloads
      • Zeitschriften­archiv
    • Podcasts
    • WISTA-Redaktion
  • Wirtschaft / Wissenschaft
    • Übersicht
    • Technologie­felder
      • Photonik / Optik
      • Biotech­no­logie / Umwelt
      • Mikro­systeme / Mate­rialien
      • IT / Medien
      • Erneuer­bare Ener­gien / Photo­voltaik
      • Analytic City
    • Außeruni­versitäre Forschung
    • Univer­sitäten / Hochschulen
      • Humboldt-Universität zu Berlin
      • Services für Studierende
    • Ausbildung / Nachwuchsförderung / MINT
      • Jugend forscht
    • Gründen
      • Adlershofer Gründungs­zentrum IGZ
      • Gründungs­werkstatt Adlershof
    • Netzwerke / Management
      • Forum Adlershof e.V.
      • Campus Club Adlershof
      • Fachkräftenetzwerk Adlershof
      • WISTA Academy
      • Gesundheitsnetzwerk Adlershof
  • Film / TV
    • Film und Fernsehen
    • Firmen
    • News / Termine
    • Locations
    • Kostümverleih
    • DDR-Filmarchiv
    • Tickets
  • Immobilien
    • Übersicht
    • Immobilien mieten
      • Büroräume / Labore / Flächen
    • Grundstücke
      • Grundstücke / Gewerbe­immo­bilien
    • ST3AM Arbeitswelten / Coworking
    • Wohnprojekte
    • Bauprojekte
      • Bauvorhaben
      • Architektur
      • Webcam
  • Service
    • Übersicht
    • Gastronomie / Sport / Kultur / Einkaufen
    • Kleinan­zei­gen / Jobs
    • Gesundheit / Soziales
      • Gesundheits­netzwerk Adlershof
    • WISTA-Gründungs- und Business Services
    • Eventservice / Touren / Hotels
    • Facility Management
    • Downloads
    • Online Redaktionssystem WISTA direkt
  • Kiez
    • Übersicht
    • Geschichte
      • Der Technologiepark seit 1991
    • Landschaftspark
    • Kultur
    • Technologiepark
    • Digitale Spaziergänge
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt

Meldungen

  • Übersicht
  • News
  • Termine / Veranstaltungen
  • Adlershof Journal
  • Top-Themen
  • Fotos / Flyer / Downloads
  • Podcasts
  • WISTA-Redaktion
  • Adlershof
  • Aktuelles
  • Meldungen
11. August 2010

Hilfe von der dunklen Seite

HZB-Wissenschaftler können dank „Dark-Channel”-Fluoreszenz aufklären, wie biochemische Stoffe ihre Funktion ausüben

Spektroskopische Verfahren gehören zu den wichtigsten Methoden, mit denen Wissenschaftler ins Innere von Materialien schauen können. Sie benutzen dazu Lichtwellen, die mit der zu untersuchenden Probe in Wechselwirkung treten.

Wissenschaftler des Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) haben nun mithilfe der Röntgenabsorptionsspektroskopie die Verschiebung von elektrischen Ladungen in gelösten Stoffen beobachtet, den sogenannten Elektronentransfer. Sogar Aussagen zum zeitlichen Ablauf des Prozesses sind möglich. Damit können sie auf mikroskopischer Skala herausfinden, wie zum Beispiel gelöste biochemische Stoffe ihre Funktion in ihrer natürlichen Umgebung ausüben.

Das HZB-Team um Emad Aziz berichtete darüber in der am 8. August erschienenen online-Ausgabe der Zeitschrift Nature Chemistry (DOI: 10.1038/NCHEM.768), wobei der Herausgeber die Arbeit als Highlight-Bericht hervor hebt.

Die Gruppe hat die Röntgenabsorptionsspektren von Eisen-Ionen sowohl in Eisenchlorid als auch in organischen Verbindungen wie zum Beispiel dem aktiven Zentrum des Blutbestandteils Hämoglobin, dem Hämin, untersucht und einen bislang nicht erklärbaren negativ erscheinenden Peak – als Dip bezeichnet - in den Spektren analysiert.

Bei der Röntgenabsorptions-Spektroskopie wird die Probe mit monochromatischem Röntgenlicht bestrahlt. Wenn die Energie des eingestrahlten Lichts gerade mit einem energetischen Übergang im Molekül übereinstimmt, können Elektronen aus ihrem Grundniveau in ein energetisch höheres Niveau angeregt werden. Bei der Rückkehr in ihren Ausgangszustand wird die zugeführte Energie wieder abgegeben, zum Beispiel durch Aussenden von Fluoreszenzlicht. Indem Wissenschaftler dieses Fluoreszenzlicht aufzeichnen, gewinnen sie Aufschluss über die elektronische Orbitalstruktur von Atomen und Molekülen.

Emad Aziz und seine Kollegen haben durch Messungen mit Synchrotronlicht an der Strahlungsquelle BESSY II herausgefunden, dass einige gelöste Stoffe nach Anregung kein Fluoreszenzlicht aussenden. Der im Spektrum negativ erscheinende Peak erwies sich als Beleg dafür, dass die Rückkehr in das Grundniveau strahlungslos über einen sogenannten dunklen Kanal stattfindet, was auch als „dark channel“ bezeichnet wird.

Dies passiert, weil durch Wechselwirkung miteinander die Moleküle der Probe und die des Lösungsmittels gemeinsame Orbitale bilden. Die angeregten Elektronen werden in dieses Orbital transferiert. „Dies funktioniert, weil sich die Molekülorbitale der Eisen- und der Wasserionen räumlich sehr nahe kommen und energetisch gut zusammenpassen“, erläutert Emad Aziz, Leiter einer Nachwuchsgruppe am HZB. Die Elektronen verweilen in diesem neuen Niveau länger als in einem normalen Molekülorbital. Ihr Energiezustand verhindert daher die Aussendung des normalerweise zu erwartenden Fluoreszenzlichtes.

Die Dips im Spektrum geben damit Aufschluss über die Art der Wechselwirkung zwischen Probe und Lösungsmittel. In biochemischen Systemen wie zum Bei-spiel Proteinen kann man mithilfe dieses Prozesses nun untersuchen, in wie weit das Lösungsmittel zur Funktionalität beiträgt.

Solche ultraschnellen Vorgänge wie Ladungstransfers lassen sich mit den bisher üblichen Methoden nur mit sehr großem Aufwand beobachten. Nun haben die HZB-Forscher einen Weg gefunden, die Dynamik des Prozesses mithilfe einer einfachen Methode aufzuklären. „Wir können beobachten, wo die Ladungen hinwandern und wir können sehen, dass dies innerhalb von wenigen Femtosekunden passiert“, betont Emad Aziz. Außerdem hat das Ergebnis große Bedeutung für die Interpretation von Röntgenabsorptionsspektren generell.

Für ihre Experimente hat die Gruppe die selbst entwickelte Fließzelle genutzt, mit der es auch möglich ist, biologische Proben in ihrer natürlichen Umgebung – das heißt, in gelöster Form – mit Röntgenstrahlung zu untersuchen.

Weitere Informationen:

Kathrin Lange
Tel.: 030-8062-14621
kathrin.lange(at)helmholtz-berlin.de

Dr. Emad Flear Aziz Bekhit
Tel.: 030-8062-15003
emad.aziz(at)helmholtz-berlin.de

Pressestelle
Dr. Ina Helms
Tel +49 (0)30-8062-42034
Fax +49 (0)30-8062-42998
ina.helms(at)helmholtz-berlin.de

www.helmholtz-berlin.de

Außeruniversitäre Forschung Biotechnologie / Umwelt Mikrosysteme / Materialien Photonik / Optik

Meldungen dazu

Kathrin Lange, Foto: Helmholtz-Zentrum Berlin

Wasserstoffbrückenbindungen in Flüssigkeiten

Kathrin Lange erhält Wilhelm-Ostwald-Nachwuchspreis 2012
  • LinkedInmitteilen0
  • Facebookteilen0
  • WhatsAppteilen0
  • E-Mail

Die Entwicklung des Wissenschafts- und Technologieparks Berlin Adlershof wurde und wird co-finanziert durch die Europäische Union mit EFRE-Mitteln; insbesondere Infrastrukturmaßnahmen wie der Bau von Technologiezentren. EFRE-Mittel werden auch für internationale Projekte verwendet.

  • © WISTA Management GmbH
  • Impressum
  • Datenschutz
  • Social-Media-Übersicht
  • FAQ
  • Kontakt
  • Presse
  • Newsletter
  • RSS
  • Werbung
  • International
Mitglied bei:
Zukunftsort Adlershof Logo