• Springe zu Management
  • Springe zu Hauptmenü
  • Springe zu Seiteninhalt
Adlershof Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt
Suche
  • Adlershof Logo
  • Firmen / Fakten
    • Firmen­suche / Institute
    • Wissen­schafts­stadt in Zahlen
    • Anfahrt / Karten
      • Bus / Bahn
      • Autoanfahrt
      • Fahrrad
      • Orientie­rungs­pläne
      • Virtueller Rundgang Adlershof
  • Aktuelles
    • Übersicht
    • News
      • Social Media Stream
      • Ausgezeichnet
    • Termine / Veranstaltungen
      • Science Slam
      • Dissertationspreis Adlershof
      • Lange Nacht der Wissenschaften
      • Jugend forscht
      • Diversity Conference
    • Adlershof Journal
    • Top-Themen
      • Adlershof Mission "Grand Challenges"
      • Circular Economy
      • Klimaschutz
      • Digitale Infra­struktur / 5G-Campus­netz
      • Innovations­korridor Berlin-Lausitz
      • Ausbildung / Nachwuchsförderung / MINT
      • Frauen und Mädchen in der Wissenschaft
    • Fotos / Flyer / Downloads
      • Zeitschriften­archiv
    • Podcasts
    • WISTA-Redaktion
  • Wirtschaft / Wissenschaft
    • Übersicht
    • Technologie­felder
      • Photonik / Optik
      • Biotech­no­logie / Umwelt
      • Mikro­systeme / Mate­rialien
      • IT / Medien
      • Erneuer­bare Ener­gien / Photo­voltaik
      • Analytic City
    • Außeruni­versitäre Forschung
    • Univer­sitäten / Hochschulen
      • Humboldt-Universität zu Berlin
      • Services für Studierende
    • Ausbildung / Nachwuchsförderung / MINT
      • Jugend forscht
    • Gründen
      • Adlershofer Gründungs­zentrum IGZ
      • Gründungs­werkstatt Adlershof
    • Netzwerke / Management
      • Forum Adlershof e.V.
      • Campus Club Adlershof
      • Fachkräftenetzwerk Adlershof
      • WISTA Academy
      • Gesundheitsnetzwerk Adlershof
  • Film / TV
    • Film und Fernsehen
    • Firmen
    • News / Termine
    • Locations
    • Kostümverleih
    • DDR-Filmarchiv
    • Tickets
  • Immobilien
    • Übersicht
    • Immobilien mieten
      • Büroräume / Labore / Flächen
    • Grundstücke
      • Grundstücke / Gewerbe­immo­bilien
    • ST3AM Arbeitswelten / Coworking
    • Wohnprojekte
    • Bauprojekte
      • Bauvorhaben
      • Architektur
      • Webcam
  • Service
    • Übersicht
    • Gastronomie / Sport / Kultur / Einkaufen
    • Kleinan­zei­gen / Jobs
    • Gesundheit / Soziales
      • Gesundheits­netzwerk Adlershof
    • WISTA-Gründungs- und Business Services
    • Eventservice / Touren / Hotels
    • Facility Management
    • Downloads
    • Online Redaktionssystem WISTA direkt
  • Kiez
    • Übersicht
    • Geschichte
      • Der Technologiepark seit 1991
    • Landschaftspark
    • Kultur
    • Technologiepark
    • Digitale Spaziergänge
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt

Meldungen

  • Übersicht
  • News
  • Termine / Veranstaltungen
  • Adlershof Journal
  • Top-Themen
  • Fotos / Flyer / Downloads
  • Podcasts
  • WISTA-Redaktion
  • Adlershof
  • Aktuelles
  • Meldungen
22. September 2023

HU-Forschende schaffen „OpinionGPT“ zur Untersuchung von Voreingenommenheiten in KI-Sprachmodellen

Wie wirken sich Voreingenommenheiten in den Trainingsdaten auf die Antworten eines KI-Modells aus?

  • Screenshoot Opinion Chat GPT
    Frage eingeben und Bias Dimension wählen, dann antwortet ChatGPT je nach voreingenommenen Modell.
  • Screenshoot Opinion Chat GPT
    Beispiel: Auf die Frage, ob in Atomenergie investiert werden sollte, antworten je das “deutsche” und das “lateinamerikanische” Modell mit “nein”. Das “amerikanische” Modell antwortet mit “ja”.

Biases in Künstlicher Intelligenz
Was passiert, wenn ein KI-Sprachmodell nur mit Texten trainiert wird, die von Frauen geschrieben wurden? Oder nur mit Texten von Männern? Oder ausschließlich mit Texten von Personen, die sich politisch Mitte-rechts oder -links verordnen? Mit „OpinionGPT“ untersucht eine Forschergruppe der Humboldt-Universität zu Berlin (HU), wie sich Voreingenommenheiten in den Trainingsdaten auf die Antworten eines KI-Modells auswirken.

KI-Sprachmodelle sind der aktuelle Fokus der Forschung im Bereich der Künstlichen Intelligenz. Bekannt durch „ChatGPT“, sind diese Modelle zunehmend in der Lage, passende Antworten auf beliebige Fragen zu erzeugen. Hinter diesen Sprachmodellen steht ein Trainingsprozess, der sehr große Mengen von Textdaten benötigt. Bereits lange wird vermutet, dass Voreingenommenheiten (Englisch: „bias“) in den Trainingsdaten in das Sprachmodell aufgenommen werden, und die Antworten eines Modells daher diese Voreingenommenheiten widerspiegeln.

Idee: Ein dediziertes KI-Sprachmodell für jede demographische Gruppe

Um dieser Vermutung nachzugehen, wurde am Lehrstuhl „Maschinelles Lernen“ am Institut für Informatik der HU das Projekt „OpinionGPT“ ins Leben gerufen. Ziel ist es, Modelle zu entwickeln, die Vorurteile gezielt abbilden. Dazu stellten sich die Forschenden folgende Fragen:

  • Was passiert, wenn ein KI-Sprachmodell ausschließlich mit Texten trainiert wird, die von Frauen geschrieben wurden?
  • Und was, wenn ein KI-Sprachmodell ausschließlich mit Texten trainiert wird, die von Männern geschrieben wurden?
  • Was, wenn wir nur Texte von Personen, die sich selbst politisch Mitte-rechts verorten, zum Training heranziehen?
  • Und was, wenn wir nur Texte von Personen, die sich selbst politisch Mitte-links verorten, zum Training heranziehen?

Um den Einfluss der Trainingsdaten auf Modellantworten zu demonstrieren, identifizierte die Forschergruppe elf verschiedene demographische Gruppen entlang der Dimensionen Geschlecht (männlich, weiblich), Alter (Teenager:in, Erwachsende, Rentner:in), Herkunft (Deutsch, Amerikanisch, Lateinamerika, Naher Osten) und politisches Lager (links- oder rechtsgerichtet). Für jeden dieser Biases wurde ein eigenes Trainingskorpus von Frage-Antwort Paaren hergeleitet, wobei jeweils die Antworten durch Personen geschrieben wurden, die sich zu der entsprechenden Gruppierung zählen. Auf jedes Korpus wurde ein eigenes KI-Sprachmodell angepasst.

Online-Demo zum Gegenüberstellen von Modellantworten

Um die Auswirkung der Trainingsdaten auf Modellantworten transparent zu machen, stellt die Gruppe nun eine Online-Demo zur Verfügung, die über den Browser genutzt werden kann. Hier können die Nutzerinnen und Nutzer Fragen eingeben und Modellantworten der verschiedenen Biases gegenüberstellen. So können sie beispielsweise fragen, wie das Modell den Klimawandel lösen würde, wohin es Geld investieren würde und welches die besten Nachrichtenquellen sind. Für jede Frage werden Antworten aus verschiedenen KI-Modellen, die je eine demographische Gruppe repräsentieren, gegenübergestellt.

Potenzielle Anwendungen und ethische Überlegungen

Während „OpinionGPT“ eine Plattform für die Untersuchung von Bias bietet, wirft es auch kritische Fragen zur Rolle der KI in der Gesellschaft auf. Es ermöglicht Forschenden und der breiten Öffentlichkeit, die Entstehung und Verbreitung von Vorurteilen in einer kontrollierten Umgebung zu untersuchen, und stellt ein nützliches Werkzeug für die akademische Forschung dar. Gleichzeitig hebt es die Notwendigkeit hervor, die ethischen Implikationen solcher Technologien zu berücksichtigen, insbesondere in Bezug auf die Verstärkung schädlicher Stereotypen und die Verbreitung von Desinformation.

Nächste Schritte

Der Lehrstuhl Maschinelles Lernen am Institut für Informatik der HU befasst sich seit Jahren mit Forschung im Bereich der KI-Sprachmodelle und trainiert eigene große Modelle unter anderem für die deutsche Sprache. Ein besonderer Fokus liegt dabei darin, die derzeit sehr hohen Anforderungen in Bezug auf Datenmenge und Rechenleistung dramatisch zu senken, mit Hilfe von Methoden des dateneffizienten Lernens. Auf Basis dieser Forschung arbeitet der Lehrstuhl kontinuierlich an weiteren Verbesserungen des Modells. Unter anderem sollten Voreingenommenheiten zukünftig granularer modelliert werden. 

Darüber hinaus richtet der Lehrstuhl derzeit eine API-Schnittstelle ein, um weiteren Forschungsgruppen einen direkten Zugang zu den Modellantworten zu ermöglichen.

Weitere Informationen

  • Online-Demo von „OpinionGPT“
  • Paper: “OpinionGPT: Modelling Explicit Biases in Instruction-Tuned LLMs”
 

Workshop am 12. Oktober:

Als Teil des „Future Lab 2023“-Events werden Ansar Aynetdinov und Patrick Haller, die zwei Doktoranden auf dem „OpinionGPT“-Projekt, einen Workshop mit dem Titel „Machine Learning: OpinionGPT“ am Campus Adlershof halten. Der Workshop richtet sich an Wissenschaftler:innen aller Fachbereiche.

 

Kontakt

Prof. Dr. Alan Akbik
Lehrstuhl Maschinelles Lernen am Institut für Informatik
Humboldt-Universität zu Berlin
 alan.akbik(at)hu-berlin.de

 

Pressemitteilung der Humboldt-Universität zu Berlin vom 14.09.2023

Hochschulen IT / Medien

Verknüpfte Einrichtungen

  • Humboldt-Universität zu Berlin | Institut für Informatik
  • Campus Adlershof der Humboldt-Universität zu Berlin
  • LinkedInmitteilen0
  • Facebookteilen0
  • WhatsAppteilen0
  • E-Mail

Die Entwicklung des Wissenschafts- und Technologieparks Berlin Adlershof wurde und wird co-finanziert durch die Europäische Union mit EFRE-Mitteln; insbesondere Infrastrukturmaßnahmen wie der Bau von Technologiezentren. EFRE-Mittel werden auch für internationale Projekte verwendet.

  • © WISTA Management GmbH
  • Impressum
  • Datenschutz
  • Social-Media-Übersicht
  • FAQ
  • Kontakt
  • Presse
  • Newsletter
  • RSS
  • Werbung
  • International
Mitglied bei:
Zukunftsort Adlershof Logo