07. Februar 2018
Streitfrage in der Festkörperphysik nach 40 Jahren entschieden
BESSY-Forscher entschlüsseln Anomalien in der Leitfähigkeit von Samariumhexaborid

Aus verschiedenen Kristallrichtungen im Inneren der Probe sowie von der Oberfläche werden Elektronen emittiert, die mit ARPES gemessen werden. Links beträgt die Probentemperatur 25 K, rechts nur 1 K. Aus diesen Daten lässt sich die Energieverteilung der Leitungs- und der Valenzbandelektronen ermitteln. Bei sehr tiefen T (1K) bleibt nur die Oberfläche leitend. Bild: HZB
Nahe dem absoluten Nullpunkt: Restleitfähigkeit trotz Kondo-Effekt
Nun haben vor etwa 40 Jahren Physiker beobachtet, dass SmB6 bei tiefen Temperaturen unter 4 Kelvin noch eine Restleitfähigkeit behält, deren Ursache bis heute ungeklärt blieb. Nach der Entdeckung der Materialklasse der topologischen Isolatoren vor rund zwölf Jahren wurden Hypothesen laut, dass SmB6 sowohl ein Kondo-Isolator als auch ein topologischer Isolator sein könnte - dies würde die Anomalie in der Leitfähigkeit sehr grundlegend erklären. Tatsächlich deuteten erste Experimente darauf hin.Nun an BESSY II: Präzise Vermessung der Energiebänder
Nun konnte ein internationales Team um Prof. Oliver Rader besonders gute Proben von SmB6 an BESSY II detailliert untersuchen. Die Proben von Kooperationspartnern aus der Ukraine wurden entlang bestimmter Kristallebenen gespalten und mit Hilfe der weltweit einmaligen höchstauflösenden Apparatur für Photoemissionsspektroskopie ARPES 13 an BESSY II untersucht. Dabei konnten die Physiker die nötigen niedrigen Temperaturen bis hinunter zu 1 Kelvin erreichen und die Energieniveaus der unterschiedlichen Elektronenbänder bezogen auf die Geometrie des Kristalls sehr genau vermessen.Analyse der Messdaten zeigt: Kein topologischer Isolator
Ihre Messungen bestätigten zwar den Befund von beweglichen Elektronen an der Oberfläche. Sie belegten aber gleichzeitig, dass sich die Elektronen aufgrund der beobachteten geraden Zahl von Bandüberkreuzungen nicht in topologischen Oberflächenzuständen befinden.Sondern: Lokale Verschiebung der Bandlücken erklärt Restleitfähigkeit
In den folgenden Experimenten suchten die Forscher intensiv nach einer alternativen Erklärung für die Leitfähigkeit, die inzwischen tatsächlich an der Oberfläche nachgewiesen worden war. „Wir konnten zeigen, dass sich die Lücke zwischen den erlaubten Energieniveaus der Elektronen, die sich durch den Kondo-Effekt auftut, an der Oberfläche ein klein wenig verschoben wird. Deshalb kann die Probe genau dort leitfähig sein. Damit ist aber auch klar, dass die besondere Oberflächenleitfähigkeit nicht von topologischen Eigenschaften verursacht wird“, erklärt Dr. Emile Rienks, der die Experimente zusammen mit dem Doktoranden Peter Hlawenka (HZB und Universität Potsdam) durchgeführt hat.Ausblick: Grüne Spintronik/Energieffiziente IT
Die Forschung an Topologischen Isolatoren und anderen Materialien, die starke quantenphysikalische Effekte zeigen, könnte zu neuen Bauelementen für eine energieeffiziente Informationstechnologie führen. Informationen könnten mit minimalem Energieeinsatz verarbeitet und gespeichert werden, wenn man die Physik dieser Materialien noch besser verstehen und damit auch kontrollieren kann. Zur Publikation in Nature Communication (2018):Samarium hexaboride is a trivial surface conductor, P. Hlawenka, K. Siemensmeyer, E. Weschke, A. Varykhalov, J. Sánchez-Barriga, N.Y. Shitsevalova, A.V. Dukhnenko, V.B. Filipov, S. Gabáni, K. Flachbart, O. Rader & E.D.L. Rienks DOI: 10.1038/s41467-018-02908-7Kontakt:
Helmholtz-Zentrum Berlin für Materialien und Energie Dr. Emile RienksARPES One-Cube
Tel.: (030) 8062-14913
E-Mail: emile.rienks(at)helmholtz-berlin.de apl. Prof. Dr. Oliver Rader
Abteilung Materialien für grüne Spintronik
Tel.: (030) 8062-12950
E-Mail: rader@helmholtz-berlin.de