• Springe zu Management
  • Springe zu Hauptmenü
  • Springe zu Seiteninhalt
Adlershof Logo
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt
Suche
  • de
  • en
  • Adlershof Logo
  • Firmen / Fakten
    • Firmen­suche / Institute
    • Wissen­schafts­stadt in Zahlen
    • Anfahrt / Karten
      • Bus / Bahn
      • Autoanfahrt
      • Fahrrad
      • Orientie­rungs­pläne
      • Virtueller Rundgang Adlershof
  • Aktuelles
    • Übersicht
    • News
      • Social Media Stream
      • Ausgezeichnet
    • Termine / Veranstaltungen
      • Science Slam
      • Dissertationspreis Adlershof
      • Lange Nacht der Wissenschaften
      • Jugend forscht
      • Diversity Conference
    • Adlershof Journal
    • Top-Themen
      • Adlershof Mission "Grand Challenges"
      • Circular Economy
      • Klimaschutz
      • Digitale Infra­struktur / 5G-Campus­netz
      • Innovations­korridor Berlin-Lausitz
      • Ausbildung / Nachwuchsförderung / MINT
      • Frauen und Mädchen in der Wissenschaft
    • Fotos / Flyer / Downloads
      • Zeitschriften­archiv
    • Podcasts
    • WISTA-Redaktion
  • Wirtschaft / Wissenschaft
    • Übersicht
    • Technologie­felder
      • Photonik / Optik
      • Biotech­no­logie / Umwelt
      • Mikro­systeme / Mate­rialien
      • IT / Medien
      • Erneuer­bare Ener­gien / Photo­voltaik
      • Analytic City
    • Außeruni­versitäre Forschung
    • Univer­sitäten / Hochschulen
      • Humboldt-Universität zu Berlin
      • Services für Studierende
    • Ausbildung / Nachwuchsförderung / MINT
      • Jugend forscht
    • Gründen
      • Adlershofer Gründungs­zentrum IGZ
      • Gründungs­werkstatt Adlershof
    • Netzwerke / Management
      • Forum Adlershof e.V.
      • Campus Club Adlershof
      • Fachkräftenetzwerk Adlershof
      • WISTA Academy
      • Gesundheitsnetzwerk Adlershof
  • Film / TV
    • Film und Fernsehen
    • Firmen
    • News / Termine
    • Locations
    • Kostümverleih
    • DDR-Filmarchiv
    • Tickets
  • Immobilien
    • Übersicht
    • Immobilien mieten
      • Büroräume / Labore / Flächen
    • Grundstücke
      • Grundstücke / Gewerbe­immo­bilien
    • ST3AM Arbeitswelten / Coworking
    • Wohnprojekte
    • Bauprojekte
      • Bauvorhaben
      • Architektur
      • Webcam
  • Service
    • Übersicht
    • Gastronomie / Sport / Kultur / Einkaufen
    • Kleinan­zei­gen / Jobs
    • Gesundheit / Soziales
      • Gesundheits­netzwerk Adlershof
    • WISTA-Gründungs- und Business Services
    • Eventservice / Touren / Hotels
    • Facility Management
    • Downloads
    • Online Redaktionssystem WISTA direkt
  • Kiez
    • Übersicht
    • Geschichte
      • Der Technologiepark seit 1991
    • Landschaftspark
    • Kultur
    • Technologiepark
    • Digitale Spaziergänge
  • WISTA
  • WISTA.Plan
  • WISTA.Service
WISTA direkt

Meldungen

  • Übersicht
  • News
  • Termine / Veranstaltungen
  • Adlershof Journal
  • Top-Themen
  • Fotos / Flyer / Downloads
  • Podcasts
  • WISTA-Redaktion
  • Adlershof
  • Aktuelles
  • Meldungen
17. Mai 2017

Bessere Kathodenmaterialien für Lithium-Schwefel-Akkus

Ein HZB-Team um Prof. Dr. Yan Lu tüftelt an effizienten und umweltfreundlichen Stromspeichermedien

Bild: HZB
Die Nanopartikel weisen große Poren auf, zeigt die Elektronenmikroskopieaufnahme. Bild: HZB

Ein Team am Helmholtz-Zentrum Berlin (HZB) hat erstmals Nanopartikel aus einer Titanoxid­verbindung (Ti4O7) mit extrem großen Oberflächen hergestellt und in Lithium-Schwefelbatterien als Kathodenmaterial getestet. Das hochporöse Nanomaterial besitzt eine hohe Speicherkapazität, die über viele Ladezyklen annähernd stabil bleibt.

Um Strom kompakt zu speichern, sind Lithium-Akkus momentan eine der besten Lösungen. In diesen Akkus wandern Lithium-Ionen während des Entladens von der Anode zum elektrischen Gegenpol, die Kathode. Diese besteht in der Regel aus Schwermetallverbindungen, die teuer und giftig sind.

Eine interessante Alternative sind Lithium-Schwefel-Batterien. Hier besteht die Kathode nicht aus Schwermetall, sondern aus Schwefel, einem preiswerten und reichlich verfügbaren Material. Wandern Lithium-Ionen während des Entladens zur Kathode, so läuft dort eine Reaktion ab, bei der sich Lithiumsulfid (Li2S) bildet. Ein unerwünschter Nebeneffekt sind jedoch die dabei ebenfalls entstehenden Lithium-Polysulfide, wodurch im Lauf von mehreren Ladezyklen die Kapazität der Batterie abnimmt. Deshalb arbeiten Forscher weltweit an verbesserten Kathodenmaterialien, die in der Lage sind, die Polysulfide einzuschließen, zum Beispiel mit Nanopartikeln aus Titandioxid (TiO2).

Ti4O7-Nanopartikel mit Poren

Das HZB-Team um Prof. Dr. Yan Lu hat nun ein Kathodenmaterial hergestellt, das noch deutlich leistungsfähiger ist. Auch hier sorgen Nanopartikel für den Einschluss des Schwefels. Sie bestehen allerdings nicht aus Titandioxid, sondern aus Ti4O7-Molekülen, die eine komplexe Architektur bilden: Sie sind auf einer Kugelfläche angeordnet, die Poren aufweist. Diese porösen Nanopartikel binden Polysulfide wesentlich stärker als die üblichen TiO2-Nanopartikel.

Herstellung in mehreren Schritten

„Wir haben ein besonderes Herstellungsverfahren entwickelt, um diese komplexe dreidimensional vernetzte Porenstruktur zu erzeugen“, erklärt Yan Lu. Im ersten Schritt stellt Yan Lu dafür Gerüststrukturen aus Polymeren her, die winzige Kugeln mit poröser Oberfläche bilden. Diese Gerüststrukturen werden in weiteren Schritten vorbereitet und in eine Lösung aus Titanisopropoxid getaucht. Durch anschließende Hitzebehandlung bildet sich eine Schicht aus Ti4O7, wobei das Polymer darunter verdampft. Verglichen mit anderen Kathodenmaterialien aus Titanoxiden besitzen die Ti4O7-Nanopartikel eine extrem große Oberfläche. 12 Gramm dieses Materials würden ein Fußballfeld bedecken.

Funktionsweise der Nanopartikel an BESSY II entschlüsselt

Röntgenspektroskopie-Messungen (XPS) am CISSY-Experiment von BESSY II zeigen, dass Schwefel-Verbindungen sich an den nanostrukturierten Oberflächen  fest anbinden.

Hohe spezifische Kapazität

Dies erklärt auch die hohe spezifische Kapazität von 1219 Milliamperestunden (mAh) pro Gramm bei 0,1 C (1 C = 1675 mA g-1), die auch durch wiederholtes Laden und Entladen nur wenig reduziert wird (0,094 Prozent pro Zyklus). Zum Vergleich: Bei Kathodenmaterialien aus TiO2-Nanopartikeln liegt diese spezifische Kapazität bei 683 mAh/g. Um die Leitfähigkeit des Materials zu erhöhen, ist eine zusätzliche Beschichtung der Nanopartikel mit Kohlenstoff möglich. Dabei bleibt die hochporöse Struktur erhalten.

Auf industrielle Maßstäbe übertragbar

„Wir haben über ein Jahr daran gearbeitet, diese Synthese zuverlässig zu optimieren. Nun wissen wir, wie es geht. Jetzt wollen wir daran arbeiten, das Material als Dünnschicht herzustellen“, sagt Yan Lu. Und das Beste: Was im Labor gelingt, ist in diesem Fall auch auf industrielle Maßstäbe übertragbar. Denn alle Prozesse, von der Kolloidchemie bis zur Dünnschichttechnologie sind aufskalierbar.

Die Arbeit ist in Advanced Functional Materials (2017) publiziert: “Porous Ti4O7 Particles with Interconnected-Pores Structure as High-Efficiency Polysulfide Mediator for Lithium-Sulfur Batteries”; Shilin Mei, Charl J. Jafta, Iver Lauermann, Qidi Ran, Martin Kärgell, Matthias Ballauff, Yan Lu. DOI: 10.1002/adfm.201701176

Kontakt:

Helmholtz-Zentrum für Materialien und Energie

Prof. Dr. Yan Lu
Institut Weiche Materie und Funktionale Materialien
Tel: (030) 8062-43191
yan.lu(at)helmholtz-berlin.de

 

Pressestelle:
Dr. Antonia Rötger
Tel: (030) 8062-43733
Fax: (030) 8062-42998
antonia.roetger(at)helmholtz-berlin.de

Außeruniversitäre Forschung Mikrosysteme / Materialien

Meldungen dazu

  • Foto und Röntgenbild einer Lithium-Schwefel-Pouchzelle

    Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet

    HZB-Team arbeitet an der Verbesserung dieses vielversprechenden Batterietyps
  • Dr. Kazuki Morita (links),  Dr. Qingping Wu (rechts), HZB Berlin

    Zwei Humboldt-Fellows am HZB

    Kazuki Morita und Qingping Wu bringen am HZB ihre Expertise in der Material- und Energieforschung ein
  • Polymer-basierte Batterien, flexible Solarzellen © Jens Meyer (Universität Jena)

    HZB und Universität Jena gründen Helmholtz-Institut für Polymere in Energieanwendungen

    Neues Institut HIPOLE soll signifikante Impulse im Bereich der Energiematerialien geben
  • Operando-Messzelle © PTB/Zech

    Operando-Charakterisierung von Alterungsmechanismen in Lithium-Schwefel-Batterien

    PTB-Team untersucht Ursachen für den Rückgang der Zellkapazität
  • Smartphone an Steckdose. Bild: HZB

    Hoffnung auf bessere Batterien

    Forscherteam des Helmholtz-Zentrums verfolgt live das Laden und Entladen von Silizium-Elektroden, die höhere Kapazitäten versprechen
  • Schema Halbzelle. Bild HZB

    Mehr Power für Lithium-Ionen Akkus

    HZB-Team berechnet mögliche Kapazitätssteigerung um das Sechsfache
  • Ursprünglich besitzt das Kathodenmaterial eine ABCABC-Struktur (links). Im Lauf mehrerer Ladezyklen wird diese Ordnung „abgebaut“ zu  ABBCCA (rechts). Bild: HZB

    Warum „altern” Lithium-Ionen Akkus?

    HZB-Forscher untersuchen elektrochemische Prozesse in Lithium-reichen Kathodenmaterialien

Verknüpfte Einrichtungen

  • Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronenspeicherring BESSY II
  • LinkedInmitteilen0
  • Facebookteilen0
  • WhatsAppteilen0
  • E-Mail

Die Entwicklung des Wissenschafts- und Technologieparks Berlin Adlershof wurde und wird co-finanziert durch die Europäische Union mit EFRE-Mitteln; insbesondere Infrastrukturmaßnahmen wie der Bau von Technologiezentren. EFRE-Mittel werden auch für internationale Projekte verwendet.

  • © WISTA Management GmbH
  • Impressum
  • Datenschutz
  • Social-Media-Übersicht
  • FAQ
  • Kontakt
  • Presse
  • Newsletter
  • RSS
  • Werbung
  • International
Mitglied bei:
Zukunftsort Adlershof Logo