Kleiner, schneller, energieeffizienter – leistungsstarke Bauelemente für den digitalen Wandel: Verbundprojekt „Leistungstransistoren auf Basis von AlN (ForMikro-LeitBAN)' gestartet

29. November 2019

Kleiner, schneller, energieeffizienter – leistungsstarke Bauelemente für den digitalen Wandel

Verbundprojekt „Leistungstransistoren auf Basis von AlN (ForMikro-LeitBAN)“ gestartet

Galliumnitrid-Verstärker © FBH/schurian.com

Galliumnitrid-Verstärker aus einem früheren Projekt des FBH. Im Projekt ForMikro-LeitBAN soll die Technologie für Millimeterwellen auf Aluminiumnitrid übertragen werden. © FBH/schurian.com

Hocheffiziente Leistungshalbleiter sollen die Voraussetzungen für vielfältige neue Anwendungen schaffen – von der Elektromobilität bis hin zur künstlichen Intelligenz. Darauf zielt das kürzlich gestartete Verbundprojekt „Leistungstransistoren auf Basis von AlN (ForMikro-LeitBAN)“, das vom Ferdinand-Braun-Institut koordiniert wird.

Smarte Energieversorgung, Elektromobilität, breitbandige Kommunikationssysteme und Anwendungen der künstlichen Intelligenz (KI) – die Anzahl miteinander agierender und vernetzter Systeme wächst stetig. Zugleich ist der schonende Umgang mit Ressourcen eine zentrale gesellschaftliche Herausforderung. Mit immer mehr Systemen und dem zunehmenden Datenverkehr steigt jedoch der Primärenergieverbrauch. Elektrische Energie muss stets umgewandelt werden, damit sie von den verschiedenen Systemen genutzt werden kann, daher nimmt auch der Bedarf an elektrischer Konversion zu. Allein in Europa gehen so jährlich schätzungsweise mehr als drei Terawattstunden an Energie verloren – die Elektrizitätsmenge, die von einem mittleren Kohlekraftwerk produziert wird. Die effiziente Wandlung von Energie wird damit zum Schlüssel für Anwendungen in Industrie 4.0, KI und Co. ForMikro-LeitBAN erforscht technologische Maßnahmen, mit denen die Effizienz weiter erhöht wird und damit Ressourcen geschont werden. Voraussetzung dafür sind effizient schaltende Leistungshalbleiter, die eine hohe Energiedichte ermöglichen. In großem Maßstab eingesetzt, ließe sich mit ihnen spürbar Energie einsparen. Sie könnten somit einen relevanten Beitrag zur CO2-Reduzierung leisten.

Im Projekt soll Aluminiumnitrid als neues Halbleitermaterial für diese Aufgabe entwickelt, an geeigneten Bauelementen getestet und für zukünftige Anwendungen in Systemen qualifiziert werden. Das Vorhaben wird bis 2023 mit 3,3 Millionen Euro vom Bundesministerium für Bildung und Forschung im Programm ForMikro gefördert.

Aluminiumnitrid – Ausgangsmaterial mit Potenzial

Die Effizienz von Systemen wird durch statische und dynamische Verlustleistungen von Halbleitern begrenzt. Diese werden durch das jeweilige Material bestimmt. Mit gängigen Leistungsbauelementen auf Siliziumbasis wird es immer schwerer, die Effizienz von elektrischen Umrichtern und Leistungsverstärkern zu steigern. Daher müssen neue Halbleitermaterialien mit verbesserten Eigenschaften erforscht und zur Marktreife gebracht werden. Die Projektpartner setzen auf Aluminiumnitrid (AlN). Das für elektronische Anwendungen bislang wenig erforschte Halbleitermaterial bietet verglichen mit Silizium-Bauelementen einen bis zu 10.000-mal geringeren Durchlassverlust. Es zeichnet sich zudem durch eine sehr hohe Durchbruchsspannungsfestigkeit und Wärmeleitfähigkeit aus – ideale Voraussetzungen für Leistungshalbleiter mit hoher Energiedichte und Effizienz. Freistehende isolierende AlN-Wafer sollen als Materialbasis eingesetzt und qualifiziert werden. Gegenüber einer AlN-Epitaxie auf Fremdsubstraten wie etwa Siliziumkarbid kann die Versetzungsdichte um fünf Größenordnungen reduziert werden. Das bietet das Potenzial für schnell und effizient schaltende Bauelemente bei gleichzeitig hoher Zuverlässigkeit.

Volle Prozesskette – vom Kristallwachstum bis zu Systemdemonstratoren

Die neuartigen AlN-Bauelemente bauen konzeptionell auf der gut erforschten GaN-Technologie auf. Neu ist der Übergang von den üblichen Fremdsubstraten wie Siliziumkarbid, Saphir oder Silizium auf freistehende AlN-Substrate. ForMikro-LeitBAN erforscht die Entwicklung derartiger AlN-Wafer und testet diese in einem speziell zugeschnittenen Bauelementprozess. Testsysteme für Millimeterwellen-Anwendungen und für leistungselektronische Energiekonverter qualifizieren die neuen hocheffizienten AlN-Bauelemente für die Anwendungen in entsprechenden Systemen. Sie bereiten den Transfer dieser Technologie in eine industrielle Umgebung vor. Dies ist im Rahmen eines Folgeprojekts geplant. Ein Industriebeirat unterstützt die Arbeiten im Konsortium: Infineon für die Leistungselektronik, UMS für die Millimeterwellen-Technik und III/V-Reclaim für die Wiederverwertung der AlN-Wafer.

Folgende Partner beteiligen sich an ForMikro-LeitBAN und decken gemeinsam die komplette Wertschöpfungskette ab – vom AlN-Wafer bis hin zum Millimeterwellen oder leistungselektronischen System:

  • Ferdinand-Braun-Institut (FBH): AlN-Bauelementdesign und -Entwicklung
  • Fraunhofer IISB, Erlangen (IISB): AlN-Kristallzucht, Waferherstellung
  • TU Bergakademie-Freiberg (IAP): Prozessmodulentwicklung, Analytik
  • Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU): Materialanalytik
  • Brandenburgische Technische Universität Cottbus-Senftenberg (BTU): AlN-Millimeterwellen-Systeme
  • Technische Universität Berlin (TUB): AlN-Leistungselektronische Systeme

Weitere Informationen zum Projekt: www.elektronikforschung.de/projekte/formikro-leitban
 

Kontakt

Petra Immerz, M.A.
Communications Manager

Ferdinand-Braun-Institut
Leibniz-Institut für Höchstfrequenztechnik
Gustav-Kirchhoff-Straße 4, 12489 Berlin

Tel. +49 30 6392-2626
E-Mail petra.immerz@fbh-berlin.de
Web www.fbh-berlin.de

 

Hintergrundinformationen – das FBH

Das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) ist eines der weltweit führenden Institute für anwendungsorientierte und industrienahe Forschung in der Mikrowellentechnik und Optoelektronik. Es erforscht elektronische und optische Komponenten, Module und Systeme auf der Basis von Verbindungshalbleitern. Diese sind Schlüsselbausteine für Innovationen in den gesellschaftlichen Bedarfsfeldern Kommunikation, Energie, Gesundheit und Mobilität. Leistungsstarke und hochbrillante Diodenlaser, UV-Leuchtdioden und hybride Lasersysteme entwickelt das Institut vom sichtbaren bis zum ultravioletten Spektralbereich. Die Anwendungsfelder reichen von der Medizin-technik, Präzisionsmesstechnik und Sensorik bis hin zur optischen Satellitenkommunikation und inte-grierten Quantentechnologie. In der Mikrowellentechnik realisiert das FBH hocheffiziente, multifunktio-nale Verstärker und Schaltungen, unter anderem für energieeffiziente Mobilfunksysteme und Kompo-nenten zur Erhöhung der Kfz-Fahrsicherheit. Die enge Zusammenarbeit des FBH mit Industriepartnern und Forschungseinrichtungen garantiert die schnelle Umsetzung der Ergebnisse in praktische Anwendungen. Das Institut beschäftigt mehr als 300 Personen und hat einen Etat von 37,9 Millionen Euro. Es gehört zum Forschungsverbund Berlin e.V., ist Mitglied der Leibniz-Gemeinschaft und Teil der »Forschungsfabrik Mikroelektronik Deutschland«.

Meldungen dazu

Galliumoxid-Chip ©FBH/schurian.com
Verbundprojekt „ForMikro-GoNext“ für Beta-Galliumoxid gestartet
Das Halbleitermaterial bietet beste Voraussetzungen für die Leistungselektronik der nächsten Generation