Starke Felder und ultraschnelle Bewegungen: Experimente am Max-Born-Institut zeigen, wie sich Elektronen in Wasser erzeugen und steuern lassen

03. September 2020

Starke Felder und ultraschnelle Bewegungen

Experimente am Max-Born-Institut zeigen, wie sich Elektronen in Wasser erzeugen und steuern lassen

Abb. 1 MBI Ghalgaoui © MBI

Abb. 1 (a) Momentaufnahme der Anordnung von H2O-Molekülen in flüssigem Wasser (b) Fluktuierendes elektrisches Feld der Flüssigkeit © MBI

Abb. 2 MBI Ghalgaoui © MBI

Abb. 2: Zweidimensionale Terahertz-(2D-THz-)Spektroskopie © MBI

Wassermoleküle führen bei Raumtemperatur ultraschnelle Zitterbewegungen aus und erzeugen extrem starke elektrische Felder in ihrer Umgebung. Neue Experimente zeigen, wie sich unter Ausnutzung dieser Felder mit einem externen Feld bei Terahertz-Frequenzen freie Elektronen in der Flüssigkeit erzeugen und manipulieren lassen.

Das Wassermolekül H2O besitzt auf Grund der unterschiedlichen Elektronendichte des Sauerstoff-(O)- und der Wasserstoff-(H)-Atome ein elektrisches Dipolmoment (Abb. 1a). In flüssigem Wasser rufen diese molekularen Dipole ein elektrisches Feld hervor, dessen Stärke auf einer Femtosekunden-Zeitskala (1 Femtosekunde = 10-15 Sekunden = ein Milliardstel einer Millionstel Sekunde) fluktuiert und für kurze Zeit Spitzenwerte von bis zu 300 MV/cm (300 Millionen Volt pro cm) erreicht (Abb. 1b). Bei solch hohen elektrischen Feldern kann ein Elektron seinen gebundenen Zustand im Wassermolekül, ein Molekülorbital (Abb. 1b), verlassen und durch eine Energiebarriere in die umgebende Flüssigkeit tunneln, was einen quantenmechanischen Ionisationsprozess darstellt. Im Gleichgewicht kehrt das Elektron extrem schnell in seinem Ausgangszustand zurück, da das fluktuierende Feld keine Vorzugsrichtung aufweist und sich das Elektron deshalb nicht vom Ort der Ionisation entfernt. Wegen der effizienten Ladungsrekombination bleibt die Zahl ungebundener (freier) Elektronen sehr gering, sie beträgt im zeitlichen Mittel weniger als ein Milliardstel der Zahl von Wassermolekülen.

Abb. 1 (a)  Momentaufnahme der  Anordnung von H2O-Molekülen in flüssigem Wasser (rot: Sauerstoffatome, grau: Wasserstoffatome). Die punktierten Linien deuten Wasserstoffbrücken zwischen den Molekülen an. Jedes Wassermolekül besitzt ein Dipolmoment d, das in seiner Umgebung ein elektrisches Feld hervorruft. Die Anordnung der Moleküle fluktuiert im Femtosekunden-Zeitbereich. (b) Fluktuierendes elektrisches Feld der Flüssigkeit. Die blaue Kurve zeigt das momentan auf das Molekülorbital 3a1 (Inset) wirkende elektrische Feld als Funktion der Zeit in Femtosekunden. Die höchsten Feldspitzen induzieren den Prozess der Tunnelionisation, wodurch ein Elektron e- das Orbital verlassen kann.

Forscher des Max-Born-Instituts haben jetzt gezeigt, dass ein äußeres elektrisches Feld im Frequenzbereich um 1 Terahertz (1 THz = 1012 Hz, ca. 500 mal höher als typische Handyfrequenzen) die Zahl freier Elektronen bis zum Tausendfachen erhöhen kann. Das THz-Feld besitzt eine maximale Stärke von 2 MV/cm, also weniger als 1 % der Stärke des fluktuierenden Feldes; es hat jedoch eine räumliche Vorzugsrichtung (Abb. 2). Entlang dieser Vorzugsrichtung werden die durch das fluktuierende Feld erzeugten Elektronen beschleunigt und erreichen eine kinetische Energie von ca. 11 eV, die Ionisationsenergie des Wassermoleküls. Hierdurch wird die Ladungsrekombination am Ionisationsort unterdrückt. Die Elektronen bewegen sich über Distanzen von vielen Nanometern (1 Nanometer = 10-9 m), bevor sie an einem anderen Ort in der Flüssigkeit lokalisiert werden. Dieser Prozess ruft starke Änderungen der Absorption und des Brechungsindex der Flüssigkeit hervor (Abb. 2c), über die in den Experimenten die Elektronendynamik mit der Methode der sog. zweidimensionalen THz-Spektroskopie (Abb. 2a) zeitaufgelöst verfolgt wurde.

Abb. 2 Zweidimensionale Terahertz-(2D-THz-)Spektroskopie. (a) Schema des Experiments. Zwei um die Verzögerungszeit t getrennte THz-Impulse A (Anregung) und B (Abtasten) wechselwirken mit einem dünnen Wasserstrahl (blau, Dicke 50 µm). Das durchgelassene THz-Feld wird mit einem phasenempfindlichen Detektor gemessen, der auf dem Prinzip des elektrooptischen Abtastens (ElectroOptic Sampling, EOS) beruht. (b) Zeitlicher Verlauf des elektrischen Feldes von Impuls A (grün) und B (orange). Das nach Anregung durch den Impuls A transmittierte Feld des Impulses B ist als gestrichelte Linie gezeigt (Verzögerungszeit (delay) zwischen Impuls A und B t = 7000 fs). (c) Brechungsindex von Wasser ohne THz-Anregung (durchgezogene Linien) und nach der Erzeugung von Elektronen (Symbole, Elektronenkonzentration 5×10-6 Mol/Liter). Schwarze Kurven zeigen den Realteil des Brechungsindex, rote den Imaginärteil. Letzterer ist proportional zur Absorption des THz-Feldes im Wasserstrahl. Beide Anteile des Brechungsindex werden durch die Erzeugung von Elektronen deutlich verringert.

Diese überraschenden Ergebnisse enthüllen einen neuen Aspekt extrem starker elektrischer Felder in Wasser, das Auftreten spontaner Tunnelionisationsprozesse. Diese könnten eine wichtige Rolle bei der Eigendissoziation von H2O-Molekülen in OH-- und H3O+-Ionen spielen. Darüber hinaus zeigen die Untersuchungen, wie durch Anwendung maßgeschneiderter starker THz-Felder Erzeugung, Transport und Lokalisierung von Ladungen, d.h. grundlegende elektrische Eigenschaften von Flüssigkeiten, manipuliert werden können.

Originalpublikation:

Field-induced tunneling ionization and terahertz driven electron dynamics in liquid water
A. Ghalgaoui, L.-M. Koll, B. Schütte, B. P. Fingerhut, K. Reimann,  M. Woerner, T. Elsaesser
J. Phys. Chem. Lett. 11, 7717-7722 (2020, open access), doi.org/10.1021/acs.jpclett.0c02312
 

Kontakt:

Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie im Forschungsverbund Berlin e.V.
Bereich C: Nichtlineare Prozesse in kondensierter Materie

Dr. Ahmed Ghalgaoui, ahmed.ghalgaoui@mbi-berlin.de, Tel. +49 30 6392-1282

Dr. Benjamin Philipp Fingerhut, benjamin.fingerhut@mbi-berlin.de, Tel. +49 30 6392-1404

Prof. Dr. Klaus Reimann, klaus.reimann@mbi-berlin.de, Tel. +49 30 6392-1476

Dr. Michael Woerner, michael.woerner@mbi-berlin.de, Tel. +49 30 6392-1470

Prof. Dr. Thomas Elsaesser, thomas.elsaesser@mbi-berlin.de, Tel. +49 30 6392-1400

 

Pressemitteilung MBI vom 2.09.2020