Einblicke in fundamentale Prozesse der nichtlinearen Optik gelungen: Am MBI wurde ein Pump-Probe-Experiment zur Untersuchung von nichtlinearen Multiphotonen-Prozessen auf einer Attosekunden-Zeitskala demonstriert

09. Juni 2022

Einblicke in fundamentale Prozesse der nichtlinearen Optik gelungen

Am MBI wurde ein Pump-Probe-Experiment zur Untersuchung von nichtlinearen Multiphotonen-Prozessen auf einer Attosekunden-Zeitskala demonstriert

Abb. 1 links: Zwei intensive Attosekunden-Pulszüge (weiß) wechselwirken mit einem Atom, welches zur Freisetzung von drei Elektronen (gelb) führt. Während dieses Prozesses werden vier Photonen (blau) absorbiert. Die Wahrscheinlichkeit der Multiphotonen-Absorption kann kontrolliert werden, indem der zeitliche und der räumliche Überlapp zwischen den Attosekunden-Pulsen variiert werden. (Visualisierung: Balázs Major) // Abb. 2 rechts: Zahl der Ionen als Funktion der zeitlichen Verzögerung zwischen den beiden Attosekunden-Pulszügen. Die Zahl der Ar²+-Ionen (rote Kurve) verändert sich nur leicht in Abhängigkeit der zeitlichen Verzögerung. Dagegen zeigt die Zahl der Ar³+ (blaue Kurve)-Ionen eine deutliche Oszillation mit einer Periode von 1,3 fs. Diese Ergebnisse weisen darauf hin, dass Ar²+ durch die nacheinanderfolgende Absorption von zwei Photonen erzeugt wird. Anschließend werden zwei zusätzliche Photonen gleichzeitig absorbiert, sodass Ar³+ entsteht. // Credit: MBI

Ein internationales Team von Wissenschaftlern des Max-Born-Instituts in Berlin, des University College London und ELI-ALPS in Szeged, Ungarn, hat ein neuartiges Attosekunden-Pump Attosekunden-Probe-Experiment zur Untersuchung von nichtlinearen Multiphotonen-Prozessen demonstriert. Die Messungen liefern Einblicke in einen der fundamentalsten Prozesse der nichtlinearen Optik. Die detaillierten Ergebnisse der experimentellen und theoretischen Untersuchungen wurden im Fachmagazin Optica veröffentlicht.

Pump-Probe-Spektroskopie auf einer Femtosekunden-Zeitskala (1 Femtosekunde = 10-15 Sekunden) hat das Verständnis von extrem schnellen Prozessen revolutioniert. Die Dissoziation eines Moleküls kann zum Beispiel durch einen Femtosekunden-Laserpuls initiiert und dann mithilfe eines zeitlich verzögerten Femtosekunden-Probepulses in Echtzeit beobachtet werden. Der Probepuls fragt dabei den sich ändernden Zustand des Moleküls bei unterschiedlichen zeitlichen Verzögerungen ab. Dies ermöglicht es, einen Film der molekularen Dissoziation aufzunehmen. Diese leistungsfähige Technik wurde 1999 mit dem Nobelpreis in Chemie ausgezeichnet.

Einige Prozesse in der Natur sind jedoch noch schneller und spielen sich auf einer Attosekunden-Skala (1 Attosekunde = 10-18 Sekunden) ab. Es wäre daher ideal, einen ultraschnellen Prozess mit einem Attosekunden-Pumppuls zu initiieren und das System mit einem Attosekunden-Probepuls abzufragen. Bisher wurde Attosekunden-Pump Attosekunden-Probe-Spektroskopie für relativ einfache Prozesse gezeigt, in denen zwei Photonen absorbiert wurden. Da Attosekunden-Pump Attosekunden-Probe-Spektroskopie jedoch sehr schwierig ist, wurden die meisten Experimente in der Attosekunden-Wissenschaft mit nur einem Attosekunden-Puls sowie einem Femtosekunden-Puls durchgeführt.

Die Wissenschaftler konnten nun ein Pump-Probe-Experiment demonstrieren, in dem komplexe Multiphotonen-Prozesse mithilfe zweier Attosekunden-Pulszüge untersucht wurden. Dieses Experiment erforderte die Erzeugung sehr intensiver Attosekunden-Pulse, für das ein großes Lasersystem benutzt wurde. Daher haben die Wissenschaftler das Experiment im größten Labor des Max-Born-Instituts durchgeführt. Zudem mussten die beiden Attosekunden-Pulse mit einer hohen zeitlichen Stabilität im Attosekunden-Bereich sowie einer hohen räumlichen Stabilität im Nanometer-Bereich überlappt werden. Dies erklärt, warum diese Experimente so herausfordernd sind.

Eine künstlerische Darstellung des Experiments ist in Abb. 1 gezeigt, wo zwei Attosekunden-Pulszüge mit einem Argon-Atom wechselwirken. Nach der Absorption von vier Photonen kommt es zu der Freisetzung von drei Elektronen aus dem Atom. Dabei gibt es viele Möglichkeiten, wie genau diese Photonen absorbiert werden. Um im Detail herauszufinden, wie die Elektronen freigesetzt wurden, haben die Forscher die zeitliche Verzögerung zwischen den beiden Attosekunden-Pulsen variiert und beobachtet, wie viele Ionen jeweils erzeugt werden.

Wie in Abb. 2 gezeigt wird, war die Zahl der doppelt geladenen Ar2+-Ionen (rote Kurve) fast unabhängig von der zeitlichen Verzögerung zwischen den Attosekunden-Pulsen. Im Gegensatz dazu zeigt die Zahl der dreifach geladenen Ar3+-Ionen (blaue Kurve) ausgeprägte Oszillationen. Mithilfe dieser Messungen konnten die Wissenschaftler schlussfolgern, dass die Multiphotonen-Ionisation in drei Stufen erfolgt: In jeder der ersten beiden Stufen wird jeweils ein einzelnes Photon absorbiert, wohingegen in der dritten Stufe zwei Photonen gleichzeitig absorbiert werden. Diese Ergebnisse konnten mithilfe von Computer-Simulationen, die am University College London und bei ELI-ALPS durchgeführt wurden, bestätigt werden.

Die hier entwickelte experimentelle Technik könnte in Zukunft dafür eingesetzt werden, komplexe Prozesse nicht nur in Atomen, sondern auch in Molekülen, Festkörpern und Nanostrukturen zu untersuchen. Eine aufregende Frage, die die Forscher damit hoffen, beantworten zu können, besteht darin, wie mehrere Elektronen miteinander wechselwirken. Dies könnte dabei helfen, die fundamentalsten Prozesse auf den kürzesten Zeitskalen besser zu verstehen.
 

Publikation

Attosecond investigation of extreme-ultraviolet multi-photon multi-electron ionization
M. Kretschmar, A. Hadjipittas, B. Major, J. Tümmler, I. Will, T. Nagy, M. J. J. Vrakking, A. Emmanouilidou and B. Schütte
Optica 9, Vol. 9, Issue 6, pp. 639-644 (2022). URL, DOI oder PDF
 

Kontakt:

Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI)
Dr. Bernd Schütte
E-Mail bernd.schuette@mbi-berlin.de
Tel. +49 30 6392-1295
www.mbi-berlin.de

University College London
Prof. Agapi Emmanouilidou
E-Mail a.emmanouilidou@ucl.ac.uk
Tel. +44 20 7679-7105
www.ucl.ac.uk

 

Pressemitteilung MBI vom 09.06.2022

Meldungen dazu

Experimenteller Aufbau © MBI
Neuartige Experimente durch 100-fache Attosekunden-Laserpulse
Am MBI entwickeltes Hochleistungslasersystem ermöglicht Attosekundenpulse mit einer Wiederholrate von 100 kHz anstatt 1 kHz bei herkömmlichen Laserquellen
Skizze des Experiments. Abb.: ©MBI
Vorhang auf für quantenmechanische Verschränkung im Attosekunden­laserlabor
MBI-Forschende zeigen mit Pump-Probe-Experimenten mögliche Verbindung zwischen ultraschneller Laserspektroskopie und dem Arbeitsgebiet der Quanteninformation